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1 Duality

Consider the LP

(P )

{
maximize ctx
subject to Ax ≤ b

If y ∈ Rm and y ≥ 0 then
ytAx ≤ ytb

is a valid inequality for (P ).
If ytA = ct, then

ct ≤ ytb = bty

The dual of (P ) is

(D)

{
minimize bty
subject to Aty = c, y ≥ 0

Weak Duality Theorem :
If x ∈ Rn is feasible for (P ) and y ∈ Rm is feasible for (D), then ctx ≤ bty.

Proof.
ctx = (ytA)x = yt(Ax) ≤ ytb = bty.

Corollary If (P ) is unbounded, then (D) is infeasible.

Proof. Contrapositive is obvious.

Corollary If (D) is unbounded, then (P ) is infeasible.

Corollary If x̃ is feasible for (P ), ỹ is feasible for (D) and ctx̃ = btỹ, then x̃ is optimal for (P ) and ỹ is
optimal for (D).

Strong Duality Theorem :
If (P ) has and optimal solution x̃, then (D) has an optimal solution ỹ, and ctx̃ = btỹ

Proof. Consider the system

(1)

 −ctx+ bty ≤ 0
Ax ≤ b

−Aty ≤ −c
.

If x̃, ỹ satisfy (1), then x̃ is feasible for (P ) and ctx̃ ≥ btỹ. By the weak duality theorem, ctx̃ = btỹ. So x̃ is
optimal for (P ) and ỹ is optimal for (D) as required. So we may assume that (1) has no solution.

Claim: If (1) has no solution the there exist x̄ ∈ Rn, ȳ ∈ Rm, and z̄ ∈ R satisfying

(2)


−ctx̄+ btȳ ≤ 0

Ax̄ ≤ z̄b
Atȳ = z̄c
ȳ ≥ 0
z̄ ≥ 0

This claim holds by Farkas’ Lemma.
Consider the solution (x̄, ȳ, z̄) to (2).
Case 1: z̄ > 0. We can scale (x̄, ȳ, z̄) so that z̄ = 1. Now (x̄, ȳ) satisfies (1), a contradiction.
Case 2: z̄ = 0. Now ȳtA = 0 and ȳ ≥ 0. Since (P ) is feasible, ȳtb ≥ 0. That is btȳ ≥ 0. Moreover Ax̄ ≤ 0.

However (P ) is bounded, so ctx̄ ≤ 0. So −ctx̄+ btȳ ≥ 0, contradicting (2).
——————

Note
(D)

infeasible unbounded optimal
(P ) infeasible yes(exercise) yes no(exercise)

unbounded yes no no
optimal no no yes

——————
Case 3: z̄ < 0.
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Consider the following LPs:

(P1)

{
maximize ctx
subject to Ax ≤ b

(P2)

 maximize ct(x1 − x2)
subject to A(x1 − x2) ≤ b

x1, x2 ≥ 0

(P3)

 maximize ct(x1 − x2)
subject to A(x1 − x2) + s = b

x1, x2, s ≥ 0

they are all equivalent.

1.1 Complementary Slackess

Consider
(P ) max(ctx : Ax ≤ b)

and its dual
(D) min(btx : Aty = c, y ≥ 0).

If x̄ is feasible for (P ) and ȳ is feasible for (D), then

btȳ − ctx̄ = ȳb− ytAx̄

= ȳt(b−Ax̄)

=

m∑
i=1

ȳi(bi −
n∑

j=1

Aij x̄j)

Now ȳi(bi −
∑n

j=1 Aij x̄j) ≥ 0 and equality holds if and only if either ȳi = 0 or
∑n

j=1 Aij x̄j = bi.

Complementary Slackness Theorem :
Let x̄ be feasible for (P ) and ȳ be feasible for (D). Then ctx̄ = btȳ if and only if for each i ∈ {1, ... , n},

either ȳi = 0 or [Ai1, ... , Ain]x̄ = bi.

Proof. See above

1.2 Standard Inequality Form

Let x̄ be feasible for
(PSI) max(ctx : Ax ≤ b, x ≥ 0)

and ȳ be feasible for
(DSI) min(btx : Aty ≤ c, y ≥ 0).

Then ctx̄ = btȳ if and only if

1. For each i ∈ {1, ... , n} either ȳi = 0 or [Ai1, ... , Ain]x̄ = bi and

2. For each j ∈ {1, ... ,m} either x̄i = 0 or [A1j , ... , Amj ]ȳ = cj

Proof. Exersise

1.3 Standard Equality Form

Let x̄ be feasible for
(PSE) max(ctx : Ax = b, x ≥ 0)

and ȳ be feasible for
(DSE) min(btx : Aty ≤ c).

Then ctx̄ = btȳ if and only if For each j ∈ {1, ... ,m} either x̄i = 0 or [A1j , ... , Amj ]ȳ = cj

Proof. Rewrite (DSE) as (DSE′) = max(−bty : −Aty ≤ −c) and then apply slackness theorem.
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1.4 Basic Solutions

Consider

(P )

 max ctx
subject to Ax = b

x ≥ 0

and its dual

(D)

{
min ctx

subject to Aty ≥ c

where A ∈ Rm×n, b ∈ Rm, and c ∈ Rn. We assume that rank(A) = m (whitout loss of generality).

Notation: A = [A1, ... , An] and for B ⊆ {1, ... , n}, AB = [Ai : i ∈ B]. We call B a basis if |B| = m and
rank AB = m.

For a basis B,

1. there is a unique solution to

{
Ax = b

xj = 0 for all j /∈ B
, this is the basic soultion for B.

2. there is a unique y ∈ Rm satisfying (AB)
ty = cB , this is the basic dual solution.

If x̄ is a the basic solution for B and x̄ ≥ 0, then we call x̄ a basic feasible solution.
If ȳ is the basic dual solution for B and Atȳ ≥ c, then we call ȳ a basic dual feasible solution.

Optimality Theorem :
Let x̄ ∈ Rn be the basic solution for B and ȳ ∈ Rm be the basic dual solution for B. Then ctx̄ = btȳ.

Moreover, if x̄ is feasible for (P ) and ȳ is feasible for (D), then x̄ is optimal for (P ).

Proof.

btȳ − ctx̄ = x̄tAtȳ − x̄c (1)

= x̄t(Atȳ − c) (2)

= x̄t
B(A

t
B ȳ − cB) (3)

(4)

Note that this proof works since x̄ and ȳ satisfy the complemetary slackness conditions.

Remarks:

1. x̄ ∈ Rn is an extreme point of (P ) if and only if it is a basic feasible solution. (See assignment 2)

2. ȳ ∈ Rm is an extreme point of (D) if and only if it is a basic dual feasible solution. (See assigment 1,
less obvious though)

Claim: A feasible solution for (P ) is a basic feasible solution if and only if the columns of [Aj : x̄j ̸= 0]
are linearly independent.

Proof. (⇒) By definition
(⇐) Any linearly independent set extends to a basis.
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1.5 Simplex method

(P )

 max ctx
subject to Ax = b

x ≥ 0

rank(A) = m and

(D)

{
min bty

subject to Aty ≥ c

Let x̄ be a basic feasible solution for a basis B, let ȳ be the basic dual solution for B, and let v̄ = ctx̄ = btȳ.
Recall: (AB)

ty = cB
Note that for any feasible x,

ctx = ctx− ȳt(Ax− b) = (c−Atȳ)tx+ ȳtb = (c−Atȳ)tx+ v̄.

We can rewrite (P ) as

(P )

 max c̄tx+ v̄
subject to Āx = b̄

x ≥ 0

where
c̄ = c−Atȳ,

Ā = (AB)
−1A, and

b̄ = (AB)
−1b.

Note that :

1. ĀB = I so we may assume that the rows of Ā are indexed by the elements of B and that b̄ is indexed
by B

2. x̄B = b̄

3. c̄B = cB −At
B ȳ = 0

4. ȳ is feasible for (D) if and only if c̄ ≤ 0

1.6 Optimality

If c̄ ≤ 0, then x̄ is optimal for (P ) and ȳ is optimal for (D). (by (4)).

Suppose that c̄j > 0 for some j. (Note that j /∈ B by (2)). xj is the entering variable.
Define d̄ ∈ Rn by

d̄i =

 −āij : i ∈ B
1 : i = j
0 : otherwise

Note that the unique solution to
Āx = b̄

xj = t

xi = 0, i /∈ B ∪ {j}

is x̄+ td, which has objective value v̄ + tȳ (in (P )).
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1.7 Unboundedness

If d̄ ≥ 0, (P ) is unbounded. {x̄+ td̄ : t ≥ 0} is a feasible halfline and c̄td̄ = c̄j ≥ 0.
Update: Suppose that d̄ has a negative entry. Choose t = max(λ ∈ R : x̄ + λd̄ ≥ 0) and replace x̄ with

x̄+ td̄. By our choice of t, there exists i ∈ B such that x̄i = 0 and d̄i < 0. x̄i is the leading variable.
Now d̄i = āij ̸= 0 so B − {i} + {j} is a basis. Replace B with B − {i} + {j}. Note that x̄ is the basic

solution for B. Now we repeat.
Since the basis has changed in only two elements, it is easy to update the problem (P ′).
Termination:

• There are ≤
(
n
m

)
bases.

• At each iteration, the objective value does not decrease.

• There are examples where the simplex method cycles (that is, it revisits a basis).

• If the objective value does not increase in an iteration, then the solution x̄ is basic for two distinct
bases B1 and B2. So |support(x̄)| < m.

A basic solution, x̃ is nondegenerate if |support(x̃)| = m.
(P ) is nondegenerate if each of its basic solutions are nondegenerate.
Note: The simplex method always terminates for nondegenerate linear programs with at most

(
n
m

)
itera-

tions.

Conjecture Hirsch Conjecture (1957) :
The distance between any bertices in the 1-skeleton of (P ) (in standard equality form) is ≤ m. (Proven

false in 2010)

Problems:

1. Is there a polynomial bound on the diameter of the 1-skeleton?

2. Is there a ”pivoting rule” for the simplex method that gives a polynomial-time algorithm?

1.8 Perturbation Method

Idea: We carefully select the leaving variable in order to avoid cycling, this is achieved by perturbing b. Given

(P )

 max ctx
subject to Ax = b

x ≥ 0

with rank(A) = m, consider

(P ′)

 max ctx
subject to Ax = b′

x ≥ 0

where

b′ =


b1 + ϵ
b2 + ϵ2

...
bn + ϵn


where ϵ is a variavle that we think of as a small positive real number.

For polynomials p(ϵ) and q(ϵ) we write p(ϵ) < q(ϵ) if the coefficient of the smallest degree term of q(ϵ)−p(ϵ)
is positive.

Claim: (P ′) is nondegenerate.

Proof. For a basis B, consider the basic solution x̄. We have

x̄B = (AB)
−1b′

Since each row of (AB)
−1 is a nonzero real vector and the entries of b′ is are plynomials with distinct degrees,

each term of x̄B is nonzero.
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Note that we can solve (P ) using the simplex method since it is nondegenerate.
Another way to avoid cycling: Smallest subscript rule
Break ties when choosing entering and leaving variables by taking the one of minimum subscript.

Theorem (Bland) :
The smallest subscript rule avoids cycling.

Feasibility: Consider

(P )

 max ctx
subject to Ax = b

x ≥ 0

We have algorithms for:

1. Given a feasible solution, find a basic feasible solution.

2. Given a basic feasible solution, solve (P ).

How do you find a feasible solution?
We can scale so that b ≥ 0. Consider the following “auxiliary problem”:

(P ′)

 max −s1 − s2 − ...− sm
subject to Ax+ s = b

x ≥ 0, s ≥ 0

Note that:

1. x = 0, s = b is a basic feasible solution to (P ′), so we can solve this using the simplex method.

2. (P ′) is also bounded by 0. So the simplex method will terminate with an optimal solution.

3. The objective value of (x̄, s̄) is 0 if and only if x̄ is a feasible solution for (P ).

Remark: If (x̄, 0) is a basic feasible solution for (P ′), then x̄ is a basic feasible solution for (P ).
Farkas’ Lemma: Exactly one of the followint has a solution

1. (Ax = b, x ≥ 0)

2. (Aty ≥ 0, bty < 0)

The dual of (P ′) is

(D′)

{
min bty

subject to A′y ≥ 0, y ≥ −1

If (P ) is infeasible and ȳ is an optimal solution to (D′), then btȳ < 0.
So ȳ satisfies (At ≥ 0, bt < 0)
Note that this gives a constructive proof of the Farkas Lemma.

2 Midterm Review

For z1, ... , zn ∈ Rm, define conv(z1, ... , zn) = {λ1z
1 + ... + λnz

n : λ ∈ Rn, λ ≥ 0, ||λ||1 = 1} and
cone(z1, ... , zn) = {λ1z

1 + ... + λnz
n : λ ∈ Rn, λ ≥ 0}.

2.1 Seperating Hyperplane Theorems

1. If b /∈ conv(z1, ..., zn), then there is a hyperplane seperating b from conv(z1, ..., zn).

2. If b /∈ cone(z1, ..., zn), then there is a hyperplane seperating b from cone(z1, ..., zn).
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2.2 Polyhedral Theory

Polyhedron: {x ∈ Rn : Ax ≥ b}
Polytop: bounded polyhedron
Polyhedral cone: {x ∈ Rn : Ax ≥ 0}

Lemma 1 For a polyhedron P = {x ∈ Rn : Ax ≥ b}, the following are equivalent:

1. P has no extreme point

2. P contains a line

3. rank(A) < n

Lemma 2 Charecterization of extreme points ... =⇒ there are only finitely many extreme points.

Theorem A :
S ⊆ Rn is a polytope if and only if it is the convex hull of a finite set of points in Rn.

Theorem B :
If S is a polyhedral cone, then there is a finite subset Z ⊆ R such that S = cone(Z). (The converse is

also true, we just haven’t proved it.)

For S1, S2 ⊆ Rn, define
S1 + S2 = {a+ b : a ∈ S1, b ∈ S2}.

Theorem C :
Let Z be the set of exreme points of P = {x ∈ Rn : Ax ≤ b}. If P does not contain a line, then

P = conv(Z) + {x ∈ Rn : Ax ≤ 0}

B and C =⇒ There exist finite sets Z,D ∈ Rn such that

1. P = conv(Z) + cone(D)

2. ||d||2 = 1 for all d ∈ D.

If P does not contain a line, then there are unique minimal Z,D of this form.
Z is the set of extreme points. D is the set of extreme rays.
Which implies that every polyhedron that does not contain a line is generated by its extreme points and

extreme rays.

2.3 Applications

Caratheodory’s Theorem, Helly’s Theorem

2.4 Linear Programming

Let

(P )

{
max ctx

subject to Ax ≤ b

Fundamental Theorem :
(P ) is either infeasible, unbounded, or has an optimal solution.

Infeasibility Theorem (Farkas’ Lemma) :
(P ) is infeasible if and only if there exists y ∈ Rm satisfying

Aty = 0, bty < 0, y ≥ 0.

Unboundedness Theorem :
(P ) is unbounded if and only if

• (P ) is feasible, and

• there exists d ∈ Rn satisfying (Ad ≤ 0, ctd > 0).
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2.5 Duality

The dual of (P ) is

(D)

 min bty
subject to Aty = c

y ≥ 0

Weak Dulity Theorem :
Uf x̄ is feasible for (P ) and ȳ is feasible for (D) then ctx̄ ≤ btȳ.

Ideally we would like x̄, ȳ with ctx̄ = btȳ.
That is, we want x ∈ Rn and y ∈ Rm satisfying:

(1)


−ctx + bty ≥ 0
Ax ≤ b

−Aty = −c
y ≥ 0

Suppose no such x, y exists. By the Farkas Lemma (assignment question), there exist z ∈ R, x ∈ R, and
y ∈ Rm satisfying:

(2)


−ctx + bty < 0
Ax ≤ bz

Aty = cz
y ≥ 0
z ≥ 0

Note that if z ̸= 0, then by scaling the solution so that z = 1 gives us a solution to (1), a contradiction.
So we have that z = 0, so either

1. x satisfies (ctx > 0, Ax ≤ 0), or

2. y satisfies (bty < 0, Aty = 0, y ≥ 0)

In case 1: (P ) is infeasible or unbounded and (D) is infeasible.
In case 2: (P ) is infeasible and (D) is infeasible or unbounded.
In either case, neither (P ) nor (D) has an optimal solution.

Strong Duality Theorem :
(P ) has an optimal solution if and only if (D) has an optimal solution. Moreover, if x̄ is optimal for (P )

and ȳ is optimal for (D), then ctx = bty.

2.6 Application of Duality

Theorem :
If x̄ is an extreme point of the polyhedron P = {x ∈ Rn : Ax ≤ b}, then there is a half space H such that

P ∩H = {x̄}.

Proof. Since x̄ is an extreme point, there exists a partition (A′x ≤ b′, A′′x ≤ b′′) of the inequalities Ax ≤ b
such that : A′x̄ = b′, rank(A′) = n, and A′ is n× n.

Let
c = (A′)t1

α = ctx̄ = 1
tA′x̄ = 1

tb′

and
H = {x ∈ Rn : ctx ≥ α}

Now consider the LP:

(P )

 max ctx
subject to A′x ≤ b′

A′′x ≤ b′′

8



and its dual

(D)

 min (b′)ty + (b′′)tz
subject to (A′)ty + (A′′)tz = c

y, z ≥ 0
.

Let ȳ = 1 and z̄ = 0. Now x̄ is feasible for (P ), (ȳ, z̄) is feasible for (D), and ctx̄ = (b′)ty + (b′′)tz = α. So
x̄ is optimal for (P ) and (ȳ, z̄) is optimal for (D). Consider another optimal solution x̃ for (P ). Nothe that
ȳ > 0, so by the complementary slackness conditions, A′x̃ = b′. However A′ is invertible, so x̃ = x̄. Hence x̄
is the unique optimal solution and H ∩ P = {x̄}.

Exercise: Let x̄ be an extreme point of P = {x ∈ Rn : Ax ≤ b}, where A ∈ Zm×n and b ∈ Zm. Show that
if x̄ /∈ Zn, then there exists c ∈ Zn such that x̄ is an optimal solution to max(ctx : x ∈ P ) and ctx /∈ Z.

Do you need A, b to be interger valued?

3 Integer Programming

An interger program is a problem of the form:

(IP )

 max ctx
subject to Ax ≤ b

x ∈ Zn
.

The linear programming relaxation is:

(LP )

{
max ctx

subject to Ax ≤ b
.

We denote by OPT(IP ) and OPT(LP ) to be the oprimal values of IP and LP respectively. If infeasible, we
say the optimal value is −∞ and if unbounded we say the optimal value is ∞.
Note that OPT(IP ) ≤ OPT(LP ).
If Z is the set of feasible solutions to (IP ), then

conv(Z) ⊆ {x ∈ Rn : Ax ≤ b},

equality is “rare”.
A polyhedron is integral if its extreme points are integral.

Lemma If P = {x ∈ Rn : Ax ≤ b} is integral, rank(A) = n, and (LP ) has an optimal solution, then

OPT(IP ) = OPT(LP ).

Proof. OPT(LP ) is attained on at extreme point.

3.1 Totally Unimodular Matrices

A matrix is totally unimodular (TU) if each of its square submatrices have deteminant 0, 1, or −1. Note
that TU matrices can only have 0, 1, or −1 as entries.

Theorem :
Let A ∈ {0,±1}m×n be TU and b ∈ Zm. Then P = {x ∈ Rn : Ax ≤ b} is integral.

Proof. Let x̄ ∈ Rn be an extreme point of P . Then, by assignment 1, there is a subsystem A′x ≤ b′ of Ax ≤ b
that x̄ satisfies with equality and rank(A′) = n. Now we have

x̄ = (A′)−1b′.

So by Crammer’s rule, (A′)−1 is integral and hence so is x̄.

Let A ∈ {0,±1}m×n be TU. Then

1. At is TU
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2. [I, A] is TU

3. If A′ is obtained from A by scaling a row or column by −1, then A′ is TU.

4. [A,−A] is TU.

These imply that for b ∈ Zm, the following polyhedra are integral:

• P1 = {x ∈ R : Ax ≤ b, x ≥ 0}

• P2 = {x ∈ R : Ax = b, x ≥ 0}

• P3 = {x ∈ R : Ax ≤ b, l ≤ x ≤ u, where l, u ∈ Zn}

Lemma Let A ∈ {0,±1}m×n. If each column of A contains at most one 1 and at most one −1, then A is
TU.

Proof. Suppose otherwise and consider counterexample A ∈ {0,±1}m×n with m+ n minimum. Thus m = n
and det(A) /∈ {0, 1,−1}. By minimality, each column has two non-zero entries, a 1 and a −1. So the rows
sum to zero and hence, det(A) = 0, a contradiciton.

—–Mising a lecture ——
Recall that for any matching M and cover C, then |M | ≤ |C|.

Theorem Konig’s Theorem :
In a bipartite graph, the maximum size of a matching is equal to the minimum size of a cover.

Proof. Let A be the incidence matrix of a bipartite graph G = (V,E). Consider

(P )

 max 1
tx

subject to Ax ≤ 1

x ≥ 0
.

The dual is

(D)

 min 1
ty

subject to Aty ≥ 1

y ≥ 0
.

Both programs are feasible so they have an optimal solution. Let x̄ and ȳ be optimal extreme points for (P )
and (D) respectively. Since A is TU, x̄ and ȳ are integral. Note that x̄ and ȳ must be {0, 1}-valued also
(ask youself why). Let M̄ = support(x̄) and C̄ = support(ȳ). Note that C̄ is a cover and M̄ is a matching.
Moreover ∣∣C̄∣∣ = 1

ty = 1
tx =

∣∣M̄ ∣∣ ,
so we found a matching and a cover of the same size.

3.2 Min-Cost Perfect Matching

Problem: Given a bipartite graph G = (V,E) and c ∈ RE , find a perfect matching minimizing
∑

e∈M ce.
We denote

∑
e∈M ce = c(M).

We will assume that G has a perfect matching.
Example: PICTURE!!!!!
Claim: M̃ is a mincost perfect matching.
Suppose

c′(e) = {c(e) + 1 : e incident with a, c(e) otherwise}
Then, for any perfect matching M ,

c′(M) = c(M) + 1.

So finding a mincost perfect matching with respect to c′ is the same as finding a mincost perfect matching
with respect to c Let A be the incidence matrix of G and consider

(P )

 min ctx
subject to Ax = 1

x ≥ 0

10



and its dual

(D)

{
max y(V )

subject to Aty ≤ c
.

Since A is TU, there is an optimal perfect matching with c(M̃) = OPT(P ) (it’s feasible because we assumed
G to have a perfect matching). Let y ∈ RV and let c̄ = c − Aty. We call these c̄ reduced costs. Note that
c̄ ≥ 0 if and only if y is feasible for (D). Define G=(y) to be the subgraph of G with vertex set V (G) and
edge set {e ∈ E : c̄e = 0}.

Complementary slackness: if M is a perfect matching and y′ is a feasible solution for (D) then c(M) =
y′(V ) if and only if M ⊆ E(G=(y′)).

Claim: If ȳ is a feasible solution for (D) and M is a perfect matching of G=(ȳ), then M is a mincost
perfect matching.

Algorithm: Let (X,Y ) be the bipartition of G and assume that |X| = |Y | since otherwise G has no perfect
matching.

Overview: Find a feasible ȳ for (D). Let ȳ0 = 0, for each v ∈ Y . Let ȳv = min(ce : e = vw,w ∈ Y ).
Step 1: If G=(ȳ) has a perfect matching M , stop: output M .
Step 2: Find a feasible solution y′ for (D) with y′(V ) > ȳ(V ). Replace ȳ with y′ and repeat step 1.
Example: See picture Note that G=(Ȳ ) has no perfect matching since NG=(ȳ)({a, b}) = {4}.
Hall’s theorem

Lemma If ȳ ∈ RV is a feasible solution for (D), and G=(ȳ) has a perfect matching M , then M is a min cost
perfect matching.

Theorem Hall’s Theorem :
Let G be a bipartite graph with bipartition (X,Y ) where |X| = |Y |. Then G has a perfect matching if

and only if |N(Z)| ≥ |Z| for each z ∈ X.

Assumption: We have an efficient algoithm for Hall’s Theorem (That is, we can find either a perfect
mathcing or a set z ⊆ X with |N(Z)| < |Z|).

Let ȳ ∈ RV be a feasible solution for (D) and suppose that G=(ȳ) has no perfect matching. Then there
exists Z ⊆ X such that ∣∣NG=(ȳ)(Z)

∣∣ < |Z| .

Let

y′v =

 ȳv + ϵ v ∈ Z
ȳv − ϵ v ∈ NG=(ȳ)(Z)
ȳv otherwise

Note that, for small ϵ > 0, ȳ is feasible and has objective value

y′(V ) = ȳ(V ) + ϵ(|Z| − |N(Z)|) > ȳ(V ).

How large can we make ϵ?

ϵ = min
(
ce : e = uv ∈ E(G), u ∈ Z, v ∈ Y −NG=(ȳ)(Z)

)
.

This is well defined unless G has no perfect matching.
Remarks:

• if c ∈ ZE and ȳ ∈ ZV , then we get y′ ∈ ZV . (So we keep an integral dual solution.)

• There is a way to choose Z so that the number of iterations is at most |V (G)|2 (independent of c).
(seen in CO 450)

• The mins cost perfect matching problem can be solved in polynomial time, even for nonbipartite graphs.
(CO 450) We need additional constraints for X ⊆ V (G) odd.
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3.3 Directed Graphs

A directed graph is a pair (V,E) where V is a finite set and E is a set of ordered pairs of distinc vertices. V
is the vertex set and E is the edge set. For e = uv ∈ E, u is the tail and v is the head of e.

Incidence matrix for D =
(
{1, 2, 3}, {12, 23, 31, 13}

)
:

A =

−1 −1 1 0
1 0 0 −1
0 1 −1 1


Since A has one 1 and one -1 in each column, A is TU (by previous lemma).

For X ⊆ V (G), we define
IN(X) = {uv ∈ E(G) : u /∈ X, v ∈ X}

and
OUT(X) = {uv ∈ E(G) : u ∈ X, v /∈ X}.

Suppose that
Ax = b,

Then
x(IN({v}))− x(OUT({v})) = bv

for each v ∈ V .
!!!!!!!!!!!!!! — missed a lecture — !!!!!!!!!!
Claim: If x is a feasible (s, t)-flow and (S, T ) is an (s, t)-cut, then inflow(t) ≤ u(S, T )

Theorem Max-Flow Min-Cut Theorem :
The maximum value of a feasible (s, t)-flow is equal to the minimum cpacity of an (S, T )-cut.

Proof. See other peoples notes.

4 Complexity Theory

Decision problems
LP Feasibility Problem:
Instance: A ∈ Qm×n, b ∈ Qm

Question: Does there exists x ∈ Qn such that Ax ≤ b.

IP Feasibility Problem:
Instance: A ∈ Qm×n, b ∈ Qm

Question: Does there exists x ∈ Zn such that Ax ≤ b.

Bipartite Matching Problem:
Instance: G bipartite, k ∈ Z+

Question: Does G have a matching of size ≥ k?

Clique Problem:
Instance: a graph G, k ∈ Z+

Question: Does G contain a set of k pairwise adjacent vertices?

A “decision problem” is a yes/no question on a countable set of instances. The “size” of and instence is
the length of a binary encoding.

An algorithm is polynomial-time if its running times is bounded by a polynomial in the size of the input.
P is the set of all decision problems that can be solved in polynomial time.
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Nondeterministic Polynomial Time
Problems with “easy to certify” yes-instances.

Claim: LP feasibility is in NP.

Proof. Consider P = {x ∈ Rn : Ax ≤ b}. Suppose that x̄ ∈ P . Without loss of generality, we can assume
that x̄ ≥ 0. By adding some inequalities, we may assume that P ⊆ Rn

+. Now we have extreme points. So
there is a subsystem A′x ≤ b′ such that A′ is n × n and rank(A′) = n, and A′x̃ = b′. Now x̃ is the unique
solution to A′x = b′ and we have that

size(x̃) ≤ polynomial(size(A′, b′)).

Exercise: Show that IP is in NP.

Definition A decision problem P is in NP if there is a polynomial time algorithm A and a polynomial p
such that

1. for each yes-instance I of P there is a certificate c such that |c| ≤ p(|I|) and A accepts (I, C).

2. For each no-instance I of P and any c with |c| ≤ p(|I|), A rejects (I, C).

Definition We say that P1 reduces to P2 if there is a plynomial time algorithm A such that for each instance
I of P , A generates an instance I2 of P2 such that I1 is a yes instance of P1 if and only if I2 is a yes instance
of P2.

Example Consider the clique problem on an instance G = (V,E), k. Construct an instance of IP feasibility,

P


∑

v∈V xv = k
xu + xv ≤ 1(u ∼ v)

0 ≤ x ≤ 1
x integer

.

Definition A problem P ∈NP is NP-complete if every problem in NP reduces to it.

Theorem Cook :
IP feasibility is NP-complete. (Cook used “3-SAT”).

4.1 Formalism

Let A = {1, 0,−}. Let A∗ denote the set of finite words in A. A problem is any subset of A∗. Given
w,w1, w2 ∈ A∗, we say that w conatins w1 if

w = αw1β

for some α, β,∈ A∗. We say that w′ is obtained from w by replacing w1 by w2 if

w = αw1β and w′ = αw2β.

An algorithm is a sequence
(w1, w

′
1), · · · , (wk, w

′
k).

To run the algorithm on a word w, for each i ∈ {1, ..k} we replace the first instance of wi with w′
i and start

over with i = 1. Otherwise, i++.
An algorithm solves a problem Π if Π is the set of instances on which the algorithm terminates. An

algorithm is polynomial-time if there is a polynomial p such that for each instance I on which the algorithm
terminates, the algorithm terminates in p(size(I)) steps.

Exercise: Write an algorithm for checking a+ b = c on given intergers a, b, and c.
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5 Nonlinear Optimization

minimize (f(x) : x ∈ S), S ⊆ Rn, f : S → R. Recall that

• “in theory” we canreduce to the case that f(x) is linear and S is convex.

• Small problems are nontrivial.

Note that inf(f(x) : x ∈ S) may not be attained ever if S ̸= ∅ and f(x) is bounded below.

5.1 Compactness

A set S ⊆ Rn is closed if for each convergent sequence in S converge in S.
stuff, see other notes

Theorem :
Let S ⊆ Rn be a closed set and let x̄ ∈ S be on the boundery. Then there exists a nonzero c ∈ Rn such

that x̄ minimizes (ct : x ∈ S).

Proof Sketch. Take z /∈ S such that x̄ is the nearest point in S to z. Let c = x̄− z. Now continue as in the
proof of the seperating Hyperplane Theorem.

5.2 Certifying Optimality

How can we prove that x̄ minimizes (ctx : x ∈ S)? In fact, we can’t prove it in general. Nonlinear
programming is undecideble.

Theorem Cost Splitting Theorem (Sufficient condition for Optimality) :
Let S1, ... , Sm ⊆ Rn, let S = S1 ∩ S2 ∩ ... ∩ Sm. Let c ∈ Rn and let x̄ ∈ S. If there exist c1, .. , cm ∈ Rn

such that c1 + ... + cm = c and such that x̄ minimizes (ctix : x ∈ Si) for all i, then x̄ minimizes (ctx : x ∈ S).

Proof.

ctx̄ ≥ min(ctx : x ∈ S)

= min(ct1x+ ...+ ctmx : x ∈ S)

≥ min(ct1x1 + ...+ ctmxm : xi ∈ S)

= min(ct1x1 : x1 ∈ S) + ...+min(ctmxm : xm ∈ S)

≥ min(ct1x1 : x1 ∈ S1) + ...+min(ctmxm : xm ∈ Sm)

= ct1x̄+ ...+ ctmx̄

= ctx̄

Note that cost splitting is not always possible. Here is an example: Let

S1 = Ball

([
0
0

]
, 1

)
, S1 = Ball

([
2
0

]
, 1

)
, and S = S1 ∩ S2.

Cost splitting for linear Programming: it always works.

Lemma If S1, S2 ⊆ Rn are convex and int(S1 ∩ S2) ̸= ∅, then

closure(S1 ∩ S2) = closure(S1) ∩ closure(S2).

Tangent cone: For S ⊆ Rn and x̄ ∈ S,

T (x̄, S) := closure(cone({x− x̄ : x ∈ S})).

Remarks:
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• If S is convex, then T (x, S) is a closed convex cone.

• This definition is nonstandard, but agrees with the usual definition on convex sets.

Theorem :
Let S1, S2 ⊆ Rn be closed convex sets with their intersection with non-empty interior. Let x̄ ∈ S1 ∩ S2.

Then
T (x̄, S1 ∩ S2) = T (x̄, S1) ∩ T (x̄, S2).

Proof. We can translate S1 and S2 so that x̄ = 0. Now since S1 and S2 are convex sets and 0 ∈ S1 ∩ S2, we
have

cone(S1 ∩ S2) = cone(S1) ∩ cone(S2).

Since the interior of S1∩S2 is non-empty, the interior of their cones is non-empty as well and we can therefore
apply lemma 1 to get

closure(cone(S1 ∩ S2)) = closure(cone(S1)) ∩ closure(cone(S2))

which is the same as
T (x̄, S1 ∩ S2) = T (x̄, S1) ∩ T (x̄, S2).

Convex cones:

Theorem Separating Hyperplane Theorem for Cones :
Let ∅ ̸= K ⊆ Rn be a closed convex cone and z ∈ Rn. If z /∈ K, then there exists c ∈ Rn such that

ctx ≥ 0 for all x ∈ K and ctz < 0.

Proof. By the seperating hyperplane theorem, there exists c ∈ Rn and b ∈ R such that ctx ≥ b for all c ∈ K
and ctz < b. We may assume that b = inf(ctx : x ∈ K). Note that 0 ∈ K so b ≤ 0. We may assume that
b < 0 since otherwise, we would be done. There exists x̄ ∈ K with b ≤ ctx̄ < b

2 . However, K is a cone so

2x̄ ∈ K but ct2x̄ < 2b
2 = b.

Duality for cones: For S ⊆ Rn, define

S∗ = {c ∈ Rn : ctx ≥ 0, x ∈ S}

Remarks:

• If 0 ∈ S, then S∗ is the set of all c ∈ Rn such that 0 minimizes (ct : x ∈ S).

• If K is a cone, then K∗ is called the dual of K.

Lemma For any S ⊆ Rn, S∗ is a closed convex cone.
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