UNIVERSITY OF WATERLOO

Fall 2012

CO 255 - Introduction to Optimization

Author: David McLaughlin Instructor: Jim GEELEN

These notes are presented without any guaranty of any kind. They might contain material not seen in the course and/or omit material seen in the course. These notes might also contain typos and errors.

Last updated: November 23, 2012

Contents

1	Duality		1			
	1.1 Comp	lementary Slackess	2			
	1.2 Stand	ard Inequality Form	2			
	1.3 Stand		2			
	1.4 Basic	Solutions	3			
	1.5 Simpl	ex method	4			
	1.6 Optir	nality	4			
	1.7 Unbo	undedness	5			
	1.8 Pertu	rbation Method	5			
2 Midterm Review						
	2.1 Seper	ating Hyperplane Theorems	6			
	2.2 Polyh	edral Theory	7			
	2.3 Appli	cations	7			
	2.4 Linea	r Programming	7			
			8			
	2.6 Appli	cation of Duality	8			
3	Integer Programming 9					
	3.1 Total	ly Unimodular Matrices	9			
	3.2 Min-0	Cost Perfect Matching	0			
	3.3 Direc	ted Graphs 1	2			
4	4 Complexity Theory					
	-	alism	.3			
5	Nonlinear Optimization 14					
		pactness	4			
	-	ying Optimality	.4			

1 Duality

Consider the LP

$$(P) \begin{cases} \text{maximize} & c^t x\\ \text{subject to} & Ax \le b \end{cases}$$

 $y^t A x \le y^t b$

 $c^t < y^t b = b^t y$

If $y \in \mathbb{R}^m$ and $y \ge 0$ then

is a valid inequality for (P). If $y^t A = c^t$, then

The dual of (P) is

$$(D) \begin{cases} \text{minimize} & b^t y\\ \text{subject to} & A^t y = c, y \ge 0 \end{cases}$$

Weak Duality Theorem :

If $x \in \mathbb{R}^n$ is feasible for (P) and $y \in \mathbb{R}^m$ is feasible for (D), then $c^t x \leq b^t y$. *Proof.*

$$c^t x = (y^t A)x = y^t (Ax) \le y^t b = b^t y.$$

Corollary If (P) is unbounded, then (D) is infeasible.

Proof. Contrapositive is obvious.

Corollary If (D) is unbounded, then (P) is infeasible.

Corollary If \tilde{x} is feasible for (P), \tilde{y} is feasible for (D) and $c^t \tilde{x} = b^t \tilde{y}$, then \tilde{x} is optimal for (P) and \tilde{y} is optimal for (D).

Strong Duality Theorem :

If (P) has and optimal solution \tilde{x} , then (D) has an optimal solution \tilde{y} , and $c^t \tilde{x} = b^t \tilde{y}$

Proof. Consider the system

(1)
$$\begin{cases} -c^t x + b^t y &\leq 0\\ Ax &\leq b\\ -A^t y &\leq -c \end{cases}$$

If \tilde{x}, \tilde{y} satisfy (1), then \tilde{x} is feasible for (P) and $c^t \tilde{x} \ge b^t \tilde{y}$. By the weak duality theorem, $c^t \tilde{x} = b^t \tilde{y}$. So \tilde{x} is optimal for (P) and \tilde{y} is optimal for (D) as required. So we may assume that (1) has no solution.

Claim: If (1) has no solution the there exist $\bar{x} \in \mathbb{R}^n$, $\bar{y} \in \mathbb{R}^m$, and $\bar{z} \in \mathbb{R}$ satisfying

$$(2) \begin{cases} -c^t \bar{x} + b^t \bar{y} \leq 0\\ A \bar{x} \leq \bar{z} b\\ A^t \bar{y} = \bar{z} c\\ \bar{y} \geq 0\\ \bar{z} \geq 0 \end{cases}$$

This claim holds by Farkas' Lemma.

Consider the solution $(\bar{x}, \bar{y}, \bar{z})$ to (2).

Case 1: $\bar{z} > 0$. We can scale $(\bar{x}, \bar{y}, \bar{z})$ so that $\bar{z} = 1$. Now (\bar{x}, \bar{y}) satisfies (1), a contradiction.

Case 2: $\bar{z} = 0$. Now $\bar{y}^t A = 0$ and $\bar{y} \ge 0$. Since (P) is feasible, $\bar{y}^t b \ge 0$. That is $b^t \bar{y} \ge 0$. Moreover $A\bar{x} \le 0$. However (P) is bounded, so $c^t \bar{x} \le 0$. So $-c^t \bar{x} + b^t \bar{y} \ge 0$, contradicting (2).

Note

		(D)		
		infeasible	unbounded	optimal
(P)	infeasible	yes(exercise)	yes	no(exercise)
	unbounded	yes	no	no
	optimal	no	no	yes

Consider the following LPs:

$$(P1) \begin{cases} \text{maximize} & c^{t}x \\ \text{subject to} & Ax \leq b \end{cases}$$
$$(P2) \begin{cases} \text{maximize} & c^{t}(x^{1} - x^{2}) \\ \text{subject to} & A(x^{1} - x^{2}) \leq b \\ & x^{1}, x^{2} \geq 0 \end{cases}$$
$$(P3) \begin{cases} \text{maximize} & c^{t}(x^{1} - x^{2}) \\ \text{subject to} & A(x^{1} - x^{2}) + s = b \\ & x^{1}, x^{2}, s \geq 0 \end{cases}$$

they are all equivalent.

1.1 Complementary Slackess

Consider

$$(P) \quad \max(c^t x : Ax \le b)$$

and its dual

$$(D) \quad \min(b^t x : A^t y = c, y \ge 0).$$

If \bar{x} is feasible for (P) and \bar{y} is feasible for (D), then

$$b^t \bar{y} - c^t \bar{x} = \bar{y} b - y^t A \bar{x}$$

$$= \bar{y}^t (b - A \bar{x})$$

$$= \sum_{i=1}^m \bar{y}_i (b_i - \sum_{j=1}^n A_{ij} \bar{x}_j)$$

Now $\bar{y}_i(b_i - \sum_{j=1}^n A_{ij}\bar{x}_j) \ge 0$ and equality holds if and only if either $\bar{y}_i = 0$ or $\sum_{j=1}^n A_{ij}\bar{x}_j = b_i$.

Complementary Slackness Theorem :

Let \bar{x} be feasible for (P) and \bar{y} be feasible for (D). Then $c^t \bar{x} = b^t \bar{y}$ if and only if for each $i \in \{1, ..., n\}$, either $\bar{y}_i = 0$ or $[A_{i1}, ..., A_{in}]\bar{x} = b_i$.

Proof. See above

1.2 Standard Inequality Form

Let \bar{x} be feasible for

 $(PSI) \quad \max(c^t x : Ax \le b, x \ge 0)$

and \bar{y} be feasible for

$$(DSI) \quad \min(b^t x : A^t y \le c, y \ge 0).$$

Then $c^t \bar{x} = b^t \bar{y}$ if and only if

1. For each $i \in \{1, ..., n\}$ either $\overline{y}_i = 0$ or $[A_{i1}, ..., A_{in}]\overline{x} = b_i$ and

2. For each $j \in \{1, ..., m\}$ either $\bar{x}_i = 0$ or $[A_{1j}, ..., A_{mj}]\bar{y} = c_j$

Proof. Exersise

1.3 Standard Equality Form

Let \bar{x} be feasible for

 $(PSE) \quad \max(c^t x : Ax = b, x \ge 0)$

and \bar{y} be feasible for

$$(DSE) \quad \min(b^t x : A^t y \le c).$$

Then $c^t \bar{x} = b^t \bar{y}$ if and only if For each $j \in \{1, \dots, m\}$ either $\bar{x}_i = 0$ or $[A_{1j}, \dots, A_{mj}]\bar{y} = c_j$

Proof. Rewrite (DSE) as $(DSE') = \max(-b^t y : -A^t y \le -c)$ and then apply slackness theorem.

1.4 Basic Solutions

Consider

$$(P) \begin{cases} \max & c^t x\\ \text{subject to} & Ax = b\\ & x \ge 0 \end{cases}$$

and its dual

$$(D) \begin{cases} \min & c^t x\\ \text{subject to} & A^t y \ge c \end{cases}$$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, and $c \in \mathbb{R}^n$. We assume that rank(A) = m (whitout loss of generality).

Notation: $A = [A_1, ..., A_n]$ and for $B \subseteq \{1, ..., n\}$, $A_B = [A_i : i \in B]$. We call B a basis if |B| = m and rank $A_B = m$.

For a basis B,

1. there is a unique solution to $\begin{cases} Ax = b \\ x_j = 0 \text{ for all } j \notin B \end{cases}$, this is the basic soultion for B.

2. there is a unique $y \in \mathbb{R}^m$ satisfying $(A_B)^t y = c_B$, this is the basic dual solution.

If \bar{x} is a the basic solution for B and $\bar{x} \ge 0$, then we call \bar{x} a basic feasible solution. If \bar{y} is the basic dual solution for B and $A^t \bar{y} \ge c$, then we call \bar{y} a basic dual feasible solution.

Optimality Theorem :

Let $\bar{x} \in \mathbb{R}^n$ be the basic solution for B and $\bar{y} \in \mathbb{R}^m$ be the basic dual solution for B. Then $c^t \bar{x} = b^t \bar{y}$. Moreover, if \bar{x} is feasible for (P) and \bar{y} is feasible for (D), then \bar{x} is optimal for (P).

Proof.

$$b^t \bar{y} - c^t \bar{x} = \bar{x}^t A^t \bar{y} - \bar{x}c \tag{1}$$

$$= \bar{x}^t (A^t \bar{y} - c) \tag{2}$$

$$= \bar{x}_B^t (A_B^t \bar{y} - c_B) \tag{3}$$

(4)

Note that this proof works since \bar{x} and \bar{y} satisfy the complementary slackness conditions.

Remarks:

- 1. $\bar{x} \in \mathbb{R}^n$ is an extreme point of (P) if and only if it is a basic feasible solution. (See assignment 2)
- 2. $\bar{y} \in \mathbb{R}^m$ is an extreme point of (D) if and only if it is a basic dual feasible solution. (See assignment 1, less obvious though)

Claim: A feasible solution for (P) is a basic feasible solution if and only if the columns of $[A_j : \bar{x}_j \neq 0]$ are linearly independent.

Proof. (\Rightarrow) By definition (\Leftarrow) Any linearly independent set extends to a basis.

1.5 Simplex method

$$(P) \begin{cases} \max & c^t x \\ \text{subject to} & Ax = b \\ & x \ge 0 \end{cases}$$

 $\operatorname{rank}(A) = m$ and

$$(D) \left\{ \begin{array}{cc} \min & b^t y \\ \text{subject to} & A^t y \ge c \end{array} \right.$$

Let \bar{x} be a basic feasible solution for a basis B, let \bar{y} be the basic dual solution for B, and let $\bar{v} = c^t \bar{x} = b^t \bar{y}$. Recall: $(A_B)^t y = c_B$

Note that for any feasible x,

$$c^{t}x = c^{t}x - \bar{y}^{t}(Ax - b) = (c - A^{t}\bar{y})^{t}x + \bar{y}^{t}b = (c - A^{t}\bar{y})^{t}x + \bar{v}.$$

We can rewrite (P) as

$$(P) \begin{cases} \max & \bar{c}^t x + \bar{v} \\ \text{subject to} & \bar{A}x = \bar{b} \\ & x \ge 0 \end{cases}$$

where

$$\bar{c} = c - A^t \bar{y},$$

 $\bar{A} = (A_B)^{-1} A, \text{ and}$
 $\bar{b} = (A_B)^{-1} b.$

Note that :

- 1. $\bar{A}_B = I$ so we may assume that the rows of \bar{A} are indexed by the elements of B and that \bar{b} is indexed by B
- 2. $\bar{x}_B = \bar{b}$

3.
$$\bar{c}_B = c_B - A_B^t \bar{y} = 0$$

4. \bar{y} is feasible for (D) if and only if $\bar{c} \leq 0$

1.6 Optimality

If $\bar{c} \leq 0$, then \bar{x} is optimal for (P) and \bar{y} is optimal for (D). (by (4)).

Suppose that $\bar{c}_j > 0$ for some j. (Note that $j \notin B$ by (2)). x_j is the entering variable. Define $\bar{d} \in \mathbb{R}^n$ by

$$\bar{d}_i = \begin{cases} -\bar{a}_{ij} & : \quad i \in B \\ 1 & : \quad i = j \\ 0 & : \quad \text{otherwise} \end{cases}$$

Note that the unique solution to

$$Ax = b$$
$$x_j = t$$
$$x_i = 0, i \notin B \cup \{j\}$$

is $\bar{x} + td$, which has objective value $\bar{v} + t\bar{y}$ (in (P)).

1.7 Unboundedness

If $\bar{d} \ge 0$, (P) is unbounded. $\{\bar{x} + t\bar{d} : t \ge 0\}$ is a feasible halfline and $\bar{c}^t \bar{d} = \bar{c}_j \ge 0$.

Update: Suppose that \bar{d} has a negative entry. Choose $t = \max(\lambda \in \mathbb{R} : \bar{x} + \lambda \bar{d} \ge 0)$ and replace \bar{x} with $\bar{x} + t\bar{d}$. By our choice of t, there exists $i \in B$ such that $\bar{x}_i = 0$ and $\bar{d}_i < 0$. \bar{x}_i is the leading variable.

Now $\bar{d}_i = \bar{a}_{ij} \neq 0$ so $B - \{i\} + \{j\}$ is a basis. Replace B with $B - \{i\} + \{j\}$. Note that \bar{x} is the basic solution for B. Now we repeat.

Since the basis has changed in only two elements, it is easy to update the problem (P'). Termination:

- There are $\leq \binom{n}{m}$ bases.
- At each iteration, the objective value does not decrease.
- There are examples where the simplex method cycles (that is, it revisits a basis).
- If the objective value does not increase in an iteration, then the solution \bar{x} is basic for two distinct bases B_1 and B_2 . So $|\text{support}(\bar{x})| < m$.

A basic solution, \tilde{x} is nondegenerate if $|\text{support}(\tilde{x})| = m$.

(P) is nondegenerate if each of its basic solutions are nondegenerate.

Note: The simplex method always terminates for nondegenerate linear programs with at most $\binom{n}{m}$ iterations.

Conjecture Hirsch Conjecture (1957) :

The distance between any bertices in the 1-skeleton of (P) (in standard equality form) is $\leq m$. (Proven false in 2010)

Problems:

- 1. Is there a polynomial bound on the diameter of the 1-skeleton?
- 2. Is there a "pivoting rule" for the simplex method that gives a polynomial-time algorithm?

1.8 Perturbation Method

Idea: We carefully select the leaving variable in order to avoid cycling, this is achieved by perturbing b. Given

$$(P) \begin{cases} \max & c^t x \\ \text{subject to} & Ax = b \\ & x \ge 0 \end{cases}$$

with rank(A) = m, consider

$$(P') \begin{cases} \max & c^t x \\ \text{subject to} & Ax = b \\ & x \ge 0 \end{cases}$$

where

$$b' = \begin{bmatrix} b_1 + \epsilon \\ b_2 + \epsilon^2 \\ \vdots \\ b_n + \epsilon^n \end{bmatrix}$$

where ϵ is a variable that we think of as a small positive real number.

For polynomials $p(\epsilon)$ and $q(\epsilon)$ we write $p(\epsilon) < q(\epsilon)$ if the coefficient of the smallest degree term of $q(\epsilon) - p(\epsilon)$ is positive.

Claim: (P') is nondegenerate.

Proof. For a basis B, consider the basic solution \bar{x} . We have

$$\bar{x}_B = (A_B)^{-1}b'$$

Since each row of $(A_B)^{-1}$ is a nonzero real vector and the entries of b' is are plynomials with distinct degrees, each term of \bar{x}_B is nonzero.

Note that we can solve (P) using the simplex method since it is nondegenerate.

Another way to avoid cycling: Smallest subscript rule

Break ties when choosing entering and leaving variables by taking the one of minimum subscript.

Theorem (Bland) :

The smallest subscript rule avoids cycling.

Feasibility: Consider

$$(P) \begin{cases} \max & c^t x \\ \text{subject to} & Ax = b \\ & x \ge 0 \end{cases}$$

We have algorithms for:

- 1. Given a feasible solution, find a basic feasible solution.
- 2. Given a basic feasible solution, solve (P).

How do you find a feasible solution?

We can scale so that $b \ge 0$. Consider the following "auxiliary problem":

$$(P') \begin{cases} \max & -s_1 - s_2 - \dots - s_m \\ \text{subject to} & Ax + s = b \\ & x \ge 0, s \ge 0 \end{cases}$$

Note that:

- 1. x = 0, s = b is a basic feasible solution to (P'), so we can solve this using the simplex method.
- 2. (P') is also bounded by 0. So the simplex method will terminate with an optimal solution.
- 3. The objective value of (\bar{x}, \bar{s}) is 0 if and only if \bar{x} is a feasible solution for (P).

Remark: If $(\bar{x}, 0)$ is a basic feasible solution for (P'), then \bar{x} is a basic feasible solution for (P). Farkas' Lemma: Exactly one of the followint has a solution

- 1. $(Ax = b, x \ge 0)$
- 2. $(A^t y \ge 0, b^t y < 0)$

The dual of (P') is

$$(D') \quad \left\{ \begin{array}{ll} \min & b^t y \\ \text{subject to} & A' y \ge 0, y \ge -1 \end{array} \right.$$

If (P) is infeasible and \bar{y} is an optimal solution to (D'), then $b^t \bar{y} < 0$. So \bar{y} satisfies ($A^t \ge 0, b^t < 0$)

Note that this gives a constructive proof of the Farkas Lemma.

2 Midterm Review

For $z^1, \ldots, z^n \in \mathbb{R}^m$, define $\operatorname{conv}(z^1, \ldots, z^n) = \{\lambda_1 z^1 + \ldots + \lambda_n z^n : \lambda \in \mathbb{R}^n, \lambda \ge 0, ||\lambda||_1 = 1\}$ and $\operatorname{cone}(z^1, \ldots, z^n) = \{\lambda_1 z^1 + \ldots + \lambda_n z^n : \lambda \in \mathbb{R}^n, \lambda \ge 0\}.$

2.1 Separating Hyperplane Theorems

- 1. If $b \notin \operatorname{conv}(z^1, ..., z^n)$, then there is a hyperplane separating b from $\operatorname{conv}(z^1, ..., z^n)$.
- 2. If $b \notin \operatorname{cone}(z^1, ..., z^n)$, then there is a hyperplane separating b from $\operatorname{cone}(z^1, ..., z^n)$.

2.2 Polyhedral Theory

Polyhedron: $\{x \in \mathbb{R}^n : Ax \ge b\}$ Polytop: bounded polyhedron Polyhedral cone: $\{x \in \mathbb{R}^n : Ax \ge 0\}$

Lemma 1 For a polyhedron $P = \{x \in \mathbb{R}^n : Ax \ge b\}$, the following are equivalent:

- 1. P has no extreme point
- 2. P contains a line
- 3. $\operatorname{rank}(A) < n$

Lemma 2 Charecterization of extreme points $\dots \implies$ there are only finitely many extreme points.

Theorem \mathbf{A} :

 $S \subseteq \mathbb{R}^n$ is a polytope if and only if it is the convex hull of a finite set of points in \mathbb{R}^n .

Theorem B :

If S is a polyhedral cone, then there is a finite subset $Z \subseteq \mathbb{R}$ such that $S = \operatorname{cone}(Z)$. (The converse is also true, we just haven't proved it.)

For $S_1, S_2 \subseteq \mathbb{R}^n$, define

$$S_1 + S_2 = \{a + b : a \in S_1, b \in S_2\}$$

Theorem C $\,:\,$

Let Z be the set of extreme points of $P = \{x \in \mathbb{R}^n : Ax \leq b\}$. If P does not contain a line, then

$$P = \operatorname{conv}(Z) + \{ x \in \mathbb{R}^n : Ax \le 0 \}$$

B and C \implies There exist finite sets $Z, D \in \mathbb{R}^n$ such that

- 1. $P = \operatorname{conv}(Z) + \operatorname{cone}(D)$
- 2. $||d||_2 = 1$ for all $d \in D$.

If P does not contain a line, then there are unique minimal Z, D of this form.

Z is the set of extreme points. D is the set of extreme rays.

Which implies that every polyhedron that does not contain a line is generated by its extreme points and extreme rays.

2.3 Applications

Caratheodory's Theorem, Helly's Theorem

2.4 Linear Programming

Let

$$(P) \begin{cases} \max & c^t x\\ \text{subject to} & Ax \le b \end{cases}$$

Fundamental Theorem :

(P) is either infeasible, unbounded, or has an optimal solution.

Infeasibility Theorem (Farkas' Lemma) :

(P) is infeasible if and only if there exists $y \in \mathbb{R}^m$ satisfying

$$A^t y = 0, \ b^t y < 0, \ y \ge 0.$$

Unboundedness Theorem :

(P) is unbounded if and only if

- (P) is feasible, and
- there exists $d \in \mathbb{R}^n$ satisfying $(Ad \leq 0, c^t d > 0)$.

2.5 Duality

The dual of (P) is

$$(D) \begin{cases} \min & b^t y \\ \text{subject to} & A^t y = c \\ & y \ge 0 \end{cases}$$

Weak Dulity Theorem :

Uf \bar{x} is feasible for (P) and \bar{y} is feasible for (D) then $c^t \bar{x} \leq b^t \bar{y}$.

Ideally we would like \bar{x}, \bar{y} with $c^t \bar{x} = b^t \bar{y}$. That is, we want $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$ satisfying:

(1)
$$\begin{cases} -c^{t}x + b^{t}y \ge 0\\ Ax & \le b\\ & -A^{t}y = -c\\ & y \ge 0 \end{cases}$$

Suppose no such x, y exists. By the Farkas Lemma (assignment question), there exist $z \in \mathbb{R}, x \in \mathbb{R}$, and $y \in \mathbb{R}^m$ satisfying:

(2)
$$\begin{cases} -c^{t}x + b^{t}y < 0 \\ Ax & \leq bz \\ & A^{t}y = cz \\ & y \geq 0 \\ & z \geq 0 \end{cases}$$

Note that if $z \neq 0$, then by scaling the solution so that z = 1 gives us a solution to (1), a contradiction. So we have that z = 0, so either

- 1. x satisfies $(c^t x > 0, Ax \le 0)$, or
- 2. *y* satisfies $(b^t y < 0, A^t y = 0, y \ge 0)$

In case 1: (P) is infeasible or unbounded and (D) is infeasible. In case 2: (P) is infeasible and (D) is infeasible or unbounded. In either case, neither (P) nor (D) has an optimal solution.

Strong Duality Theorem :

(P) has an optimal solution if and only if (D) has an optimal solution. Moreover, if \bar{x} is optimal for (P) and \bar{y} is optimal for (D), then $c^t x = b^t y$.

2.6 Application of Duality

Theorem :

If \bar{x} is an extreme point of the polyhedron $P = \{x \in \mathbb{R}^n : Ax \leq b\}$, then there is a half space H such that $P \cap H = \{\bar{x}\}$.

Proof. Since \bar{x} is an extreme point, there exists a partition $(A'x \leq b', A''x \leq b'')$ of the inequalities $Ax \leq b$ such that : $A'\bar{x} = b'$, rank(A') = n, and A' is $n \times n$.

Let

$$c = (A')^t \mathbb{1}$$
$$\alpha = c^t \bar{x} = \mathbb{1}^t A' \bar{x} = \mathbb{1}^t b'$$

and

$$H = \{ x \in \mathbb{R}^n : c^t x \ge \alpha \}$$

Now consider the LP:

$$(P) \begin{cases} \max & c^t x \\ \text{subject to} & A' x \le b' \\ & A'' x \le b'' \end{cases}$$

and its dual

(D)
$$\begin{cases} \min & (b')^t y + (b'')^t z \\ \text{subject to} & (A')^t y + (A'')^t z = c \\ y, z \ge 0 \end{cases}$$

Let $\bar{y} = 1$ and $\bar{z} = 0$. Now \bar{x} is feasible for (P), (\bar{y}, \bar{z}) is feasible for (D), and $c^t \bar{x} = (b')^t y + (b'')^t z = \alpha$. So \bar{x} is optimal for (P) and (\bar{y}, \bar{z}) is optimal for (D). Consider another optimal solution \tilde{x} for (P). Nothe that $\bar{y} > 0$, so by the complementary slackness conditions, $A'\tilde{x} = b'$. However A' is invertible, so $\tilde{x} = \bar{x}$. Hence \bar{x} is the unique optimal solution and $H \cap P = \{\bar{x}\}$.

Exercise: Let \bar{x} be an extreme point of $P = \{x \in \mathbb{R}^n : Ax \leq b\}$, where $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^m$. Show that if $\bar{x} \notin \mathbb{Z}^n$, then there exists $c \in \mathbb{Z}^n$ such that \bar{x} is an optimal solution to $\max(c^t x : x \in P)$ and $c^t x \notin \mathbb{Z}$.

Do you need A, b to be interger valued?

3 Integer Programming

An interger program is a problem of the form:

$$(IP) \begin{cases} \max & c^t x \\ \text{subject to} & Ax \le b \\ & x \in \mathbb{Z}^n \end{cases}.$$

The linear programming relaxation is:

$$(LP) \begin{cases} \max & c^t x\\ \text{subject to} & Ax \le b \end{cases}$$

We denote by OPT(IP) and OPT(LP) to be the optimal values of IP and LP respectively. If infeasible, we say the optimal value is $-\infty$ and if unbounded we say the optimal value is ∞ . Note that $OPT(IP) \leq OPT(LP)$.

If Z is the set of feasible solutions to (IP), then

$$\operatorname{conv}(Z) \subseteq \{x \in \mathbb{R}^n : Ax \le b\},\$$

equality is "rare".

A polyhedron is integral if its extreme points are integral.

Lemma If $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ is integral, rank(A) = n, and (LP) has an optimal solution, then

OPT(IP) = OPT(LP).

Proof. OPT(LP) is attained on at extreme point.

3.1 Totally Unimodular Matrices

A matrix is totally unimodular (TU) if each of its square submatrices have determinant 0, 1, or -1. Note that TU matrices can only have 0, 1, or -1 as entries.

Theorem :

Let $A \in \{0, \pm 1\}^{m \times n}$ be TU and $b \in \mathbb{Z}^m$. Then $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ is integral.

Proof. Let $\bar{x} \in \mathbb{R}^n$ be an extreme point of P. Then, by assignment 1, there is a subsystem $A'x \leq b'$ of $Ax \leq b$ that \bar{x} satisfies with equality and rank(A') = n. Now we have

$$\bar{x} = (A')^{-1}b'.$$

So by Crammer's rule, $(A')^{-1}$ is integral and hence so is \bar{x} .

Let $A \in \{0, \pm 1\}^{m \times n}$ be TU. Then

1. A^t is TU

- 2. [I, A] is TU
- 3. If A' is obtained from A by scaling a row or column by -1, then A' is TU.
- 4. [A, -A] is TU.

These imply that for $b \in \mathbb{Z}^m$, the following polyhedra are integral:

- $P_1 = \{x \in \mathbb{R} : Ax \le b, x \ge 0\}$
- $P_2 = \{x \in \mathbb{R} : Ax = b, x \ge 0\}$
- $P_3 = \{x \in \mathbb{R} : Ax \le b, l \le x \le u, \text{ where } l, u \in \mathbb{Z}^n\}$

Lemma Let $A \in \{0, \pm 1\}^{m \times n}$. If each column of A contains at most one 1 and at most one -1, then A is TU.

Proof. Suppose otherwise and consider counterexample $A \in \{0, \pm 1\}^{m \times n}$ with m + n minimum. Thus m = n and $\det(A) \notin \{0, 1, -1\}$. By minimality, each column has two non-zero entries, a 1 and a -1. So the rows sum to zero and hence, $\det(A) = 0$, a contradiction.

 $--Mising \ a \ lecture \ --$

Recall that for any matching M and cover C, then $|M| \leq |C|$.

Theorem Konig's Theorem :

In a bipartite graph, the maximum size of a matching is equal to the minimum size of a cover.

Proof. Let A be the incidence matrix of a bipartite graph G = (V, E). Consider

$$(P) \quad \begin{cases} \max & \mathbb{1}^t x\\ \text{subject to} & Ax \le \mathbb{1}\\ & x \ge 0 \end{cases}.$$

The dual is

$$(D) \quad \begin{cases} \min & \mathbb{1}^t y \\ \text{subject to} & A^t y \ge \mathbb{1} \\ & y \ge 0 \end{cases}$$

Both programs are feasible so they have an optimal solution. Let \bar{x} and \bar{y} be optimal extreme points for (P) and (D) respectively. Since A is TU, \bar{x} and \bar{y} are integral. Note that \bar{x} and \bar{y} must be $\{0, 1\}$ -valued also (ask youself why). Let $\bar{M} = \text{support}(\bar{x})$ and $\bar{C} = \text{support}(\bar{y})$. Note that \bar{C} is a cover and \bar{M} is a matching. Moreover

$$\left|\bar{C}\right| = \mathbb{1}^{t} y = \mathbb{1}^{t} x = \left|\bar{M}\right|,$$

so we found a matching and a cover of the same size.

3.2 Min-Cost Perfect Matching

Problem: Given a bipartite graph G = (V, E) and $c \in \mathbb{R}^E$, find a perfect matching minimizing $\sum_{e \in M} c_e$.

We denote $\sum_{e \in M} c_e = c(M)$. We will assume that G has a perfect matching. Example: PICTURE!!!!! Claim: \tilde{M} is a mincost perfect matching. Suppose

 $c'(e) = \{c(e) + 1 : e \text{ incident with } a, c(e) \text{ otherwise}\}$

Then, for any perfect matching M,

$$c'(M) = c(M) + 1.$$

So finding a mincost perfect matching with respect to c' is the same as finding a mincost perfect matching with respect to c Let A be the incidence matrix of G and consider

$$(P) \quad \begin{cases} \min & c^t x \\ \text{subject to} & Ax = \mathbb{1} \\ & x \ge 0 \end{cases}$$

and its dual

$$(D) \quad \begin{cases} \max & y(V) \\ \text{subject to} & A^t y \le c \end{cases}$$

Since A is TU, there is an optimal perfect matching with $c(\tilde{M}) = OPT(P)$ (it's feasible because we assumed G to have a perfect matching). Let $y \in \mathbb{R}^V$ and let $\bar{c} = c - A^t y$. We call these \bar{c} reduced costs. Note that $\bar{c} \ge 0$ if and only if y is feasible for (D). Define $G^{=}(y)$ to be the subgraph of G with vertex set V(G) and edge set $\{e \in E : \bar{c}_e = 0\}$.

Complementary slackness: if M is a perfect matching and y' is a feasible solution for (D) then c(M) = y'(V) if and only if $M \subseteq E(G^{=}(y'))$.

Claim: If \bar{y} is a feasible solution for (D) and M is a perfect matching of $G^{=}(\bar{y})$, then M is a mincost perfect matching.

Algorithm: Let (X, Y) be the bipartition of G and assume that |X| = |Y| since otherwise G has no perfect matching.

Overview: Find a feasible \bar{y} for (D). Let $\bar{y}_0 = 0$, for each $v \in Y$. Let $\bar{y}_v = \min(c_e : e = vw, w \in Y)$.

Step 1: If $G^{=}(\bar{y})$ has a perfect matching M, stop: output M.

Step 2: Find a feasible solution y' for (D) with $y'(V) > \bar{y}(V)$. Replace \bar{y} with y' and repeat step 1. Example: See picture Note that $G^{=}(\bar{Y})$ has no perfect matching since $N_{G^{=}(\bar{y})}(\{a,b\}) = \{4\}$. Hall's theorem

Lemma If $\bar{y} \in \mathbb{R}^V$ is a feasible solution for (D), and $G^{=}(\bar{y})$ has a perfect matching M, then M is a min cost perfect matching.

Theorem Hall's Theorem :

Let G be a bipartite graph with bipartition (X, Y) where |X| = |Y|. Then G has a perfect matching if and only if $|N(Z)| \ge |Z|$ for each $z \in X$.

Assumption: We have an efficient algorithm for Hall's Theorem (That is, we can find either a perfect mathcing or a set $z \subseteq X$ with |N(Z)| < |Z|).

Let $\bar{y} \in \mathbb{R}^V$ be a feasible solution for (D) and suppose that $G^{=}(\bar{y})$ has no perfect matching. Then there exists $Z \subseteq X$ such that

$$\left|N_{G^{=}(\bar{y})}(Z)\right| < |Z|$$

Let

$$y'_{v} = \begin{cases} \bar{y}_{v} + \epsilon & v \in Z \\ \bar{y}_{v} - \epsilon & v \in N_{G^{=}(\bar{y})}(Z) \\ \bar{y}_{v} & \text{otherwise} \end{cases}$$

Note that, for small $\epsilon > 0$, \bar{y} is feasible and has objective value

$$y'(V) = \bar{y}(V) + \epsilon(|Z| - |N(Z)|) > \bar{y}(V).$$

How large can we make ϵ ?

$$\epsilon = \min\left(c_e : e = uv \in E(G), u \in Z, v \in Y - N_{G^{=}(\bar{y})}(Z)\right).$$

This is well defined unless G has no perfect matching.

Remarks:

- if $c \in \mathbb{Z}^E$ and $\bar{y} \in \mathbb{Z}^V$, then we get $y' \in \mathbb{Z}^V$. (So we keep an integral dual solution.)
- There is a way to choose Z so that the number of iterations is at most $|V(G)|^2$ (independent of c). (seen in CO 450)
- The mins cost perfect matching problem can be solved in polynomial time, even for nonbipartite graphs. (CO 450) We need additional constraints for $X \subseteq V(G)$ odd.

3.3 Directed Graphs

A directed graph is a pair (V, E) where V is a finite set and E is a set of ordered pairs of distinc vertices. V is the vertex set and E is the edge set. For $e = uv \in E$, u is the tail and v is the head of e.

Incidence matrix for $D = (\{1, 2, 3\}, \{12, 23, 31, 13\}):$

$$A = \begin{bmatrix} -1 & -1 & 1 & 0 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & -1 & 1 \end{bmatrix}$$

Since A has one 1 and one -1 in each column, A is TU (by previous lemma).

For $X \subseteq V(G)$, we define

$$IN(X) = \{uv \in E(G) : u \notin X, v \in X\}$$

and

$$OUT(X) = \{uv \in E(G) : u \in X, v \notin X\}$$

Ax = b,

Suppose that

Then

$$x(\mathrm{IN}(\{v\})) - x(\mathrm{OUT}(\{v\})) = b_v$$

for each $v \in V$.

!!!!!!!!!!!! — missed a lecture — !!!!!!!!!

Claim: If x is a feasible (s, t)-flow and (S, T) is an (s, t)-cut, then inflow $(t) \le u(S, T)$

${\bf Theorem} \ {\rm Max-Flow} \ {\rm Min-Cut} \ {\rm Theorem}:$

The maximum value of a feasible (s, t)-flow is equal to the minimum cpacity of an (S, T)-cut.

Proof. See other peoples notes.

4 Complexity Theory

Decision problems

LP Feasibility Problem: Instance: $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^m$ Question: Does there exists $x \in \mathbb{Q}^n$ such that $Ax \leq b$.

IP Feasibility Problem: Instance: $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^m$ Question: Does there exists $x \in \mathbb{Z}^n$ such that $Ax \leq b$.

Bipartite Matching Problem: Instance: G bipartite, $k \in \mathbb{Z}_+$ Question: Does G have a matching of size $\geq k$?

Clique Problem: Instance: a graph $G, k \in \mathbb{Z}_+$ Question: Does G contain a set of k pairwise adjacent vertices?

A "decision problem" is a yes/no question on a countable set of instances. The "size" of and instance is the length of a binary encoding.

An algorithm is polynomial-time if its running times is bounded by a polynomial in the size of the input. \mathcal{P} is the set of all decision problems that can be solved in polynomial time.

Nondeterministic Polynomial Time

Problems with "easy to certify" yes-instances.

Claim: LP feasibility is in NP.

Proof. Consider $P = \{x \in \mathbb{R}^n : Ax \leq b\}$. Suppose that $\bar{x} \in P$. Without loss of generality, we can assume that $\bar{x} \geq 0$. By adding some inequalities, we may assume that $P \subseteq \mathbb{R}^n_+$. Now we have extreme points. So there is a subsystem $A'x \leq b'$ such that A' is $n \times n$ and $\operatorname{rank}(A') = n$, and $A'\tilde{x} = b'$. Now \tilde{x} is the unique solution to A'x = b' and we have that

$$size(\tilde{x}) \leq polynomial(size(A', b')).$$

Exercise: Show that IP is in NP.

Definition A decision problem P is in NP if there is a polynomial time algorithm A and a polynomial p such that

- 1. for each yes-instance I of P there is a certificate c such that $|c| \leq p(|I|)$ and A accepts (I, C).
- 2. For each no-instance I of P and any c with $|c| \le p(|I|)$, A rejects (I, C).

Definition We say that P_1 reduces to P_2 if there is a plynomial time algorithm A such that for each instance I of P, A generates an instance I_2 of P_2 such that I_1 is a yes instance of P_1 if and only if I_2 is a yes instance of P_2 .

Example Consider the clique problem on an instance G = (V, E), k. Construct an instance of IP feasibility,

$$P \begin{cases} \sum_{v \in V} x_v = k \\ x_u + x_v \le 1(u \sim v) \\ 0 \le x \le 1 \\ x \text{ integer} \end{cases}$$

Definition A problem $P \in NP$ is NP-complete if every problem in NP reduces to it.

Theorem Cook :

IP feasibility is NP-complete. (Cook used "3-SAT").

4.1 Formalism

Let $\mathcal{A} = \{1, 0, -\}$. Let \mathcal{A}^* denote the set of finite words in \mathcal{A} . A problem is any subset of \mathcal{A}^* . Given $w, w_1, w_2 \in \mathcal{A}^*$, we say that w conatins w_1 if

$$w = \alpha w_1 \beta$$

for some $\alpha, \beta, \in \mathcal{A}^*$. We say that w' is obtained from w by replacing w_1 by w_2 if

$$w = \alpha w_1 \beta$$
 and $w' = \alpha w_2 \beta$.

An algorithm is a sequence

$$(w_1, w'_1), \cdots, (w_k, w'_k).$$

To run the algorithm on a word w, for each $i \in \{1, ...k\}$ we replace the first instance of w_i with w'_i and start over with i = 1. Otherwise, i + +.

An algorithm solves a problem Π if Π is the set of instances on which the algorithm terminates. An algorithm is polynomial-time if there is a polynomial p such that for each instance I on which the algorithm terminates, the algorithm terminates in p(size(I)) steps.

Exercise: Write an algorithm for checking a + b = c on given intergers a, b, and c.

5 Nonlinear Optimization

minimize $(f(x): x \in S), S \subseteq \mathbb{R}^n, f: S \to \mathbb{R}$. Recall that

- "in theory" we can reduce to the case that f(x) is linear and S is convex.
- Small problems are nontrivial.

Note that $\inf(f(x) : x \in S)$ may not be attained ever if $S \neq \emptyset$ and f(x) is bounded below.

5.1 Compactness

A set $S \subseteq \mathbb{R}^n$ is closed if for each convergent sequence in S converge in S. stuff, see other notes

Theorem :

Let $S \subseteq \mathbb{R}^n$ be a closed set and let $\bar{x} \in S$ be on the boundary. Then there exists a nonzero $c \in \mathbb{R}^n$ such that \bar{x} minimizes $(c^t : x \in S)$.

Proof Sketch. Take $z \notin S$ such that \bar{x} is the nearest point in S to z. Let $c = \bar{x} - z$. Now continue as in the proof of the separating Hyperplane Theorem.

5.2 Certifying Optimality

How can we prove that \bar{x} minimizes $(c^t x : x \in S)$? In fact, we can't prove it in general. Nonlinear programming is undecideble.

Theorem Cost Splitting Theorem (Sufficient condition for Optimality) :

Let $S_1, \ldots, S_m \subseteq \mathbb{R}^n$, let $S = S_1 \cap S_2 \cap \ldots \cap S_m$. Let $c \in \mathbb{R}^n$ and let $\bar{x} \in S$. If there exist $c_1, \ldots, c_m \in \mathbb{R}^n$ such that $c_1 + \ldots + c_m = c$ and such that \bar{x} minimizes $(c_i^t x : x \in S_i)$ for all i, then \bar{x} minimizes $(c^t x : x \in S)$.

Proof.

$$\begin{array}{lll} c^{t}\bar{x} & \geq & \min(c^{t}x:x\in S) \\ & = & \min(c_{1}^{t}x+\ldots+c_{m}^{t}x:x\in S) \\ & \geq & \min(c_{1}^{t}x_{1}+\ldots+c_{m}^{t}x_{m}:x_{i}\in S) \\ & = & \min(c_{1}^{t}x_{1}:x_{1}\in S)+\ldots+\min(c_{m}^{t}x_{m}:x_{m}\in S) \\ & \geq & \min(c_{1}^{t}x_{1}:x_{1}\in S_{1})+\ldots+\min(c_{m}^{t}x_{m}:x_{m}\in S_{m}) \\ & = & c_{1}^{t}\bar{x}+\ldots+c_{m}^{t}\bar{x} \\ & = & c^{t}\bar{x} \end{array}$$

Note that cost splitting is not always possible. Here is an example: Let

$$S_1 = \text{Ball}\left(\begin{bmatrix}0\\0\end{bmatrix}, 1\right)$$
, $S_1 = \text{Ball}\left(\begin{bmatrix}2\\0\end{bmatrix}, 1\right)$, and $S = S_1 \cap S_2$.

Cost splitting for linear Programming: it always works.

Lemma If $S_1, S_2 \subseteq \mathbb{R}^n$ are convex and $int(S_1 \cap S_2) \neq \emptyset$, then

$$\operatorname{closure}(S_1 \cap S_2) = \operatorname{closure}(S_1) \cap \operatorname{closure}(S_2).$$

Tangent cone: For $S \subseteq \mathbb{R}^n$ and $\bar{x} \in S$,

$$T(\bar{x}, S) := \text{closure}(\text{cone}(\{x - \bar{x} : x \in S\})).$$

Remarks:

- If S is convex, then T(x, S) is a closed convex cone.
- This definition is nonstandard, but agrees with the usual definition on convex sets.

Theorem :

Let $S_1, S_2 \subseteq \mathbb{R}^n$ be closed convex sets with their intersection with non-empty interior. Let $\bar{x} \in S_1 \cap S_2$. Then

$$T(\bar{x}, S_1 \cap S_2) = T(\bar{x}, S_1) \cap T(\bar{x}, S_2).$$

Proof. We can translate S_1 and S_2 so that $\bar{x} = 0$. Now since S_1 and S_2 are convex sets and $0 \in S_1 \cap S_2$, we have

$$\operatorname{cone}(S_1 \cap S_2) = \operatorname{cone}(S_1) \cap \operatorname{cone}(S_2).$$

Since the interior of $S_1 \cap S_2$ is non-empty, the interior of their cones is non-empty as well and we can therefore apply lemma 1 to get

 $\operatorname{closure}(\operatorname{cone}(S_1 \cap S_2)) = \operatorname{closure}(\operatorname{cone}(S_1)) \cap \operatorname{closure}(\operatorname{cone}(S_2))$

which is the same as

$$T(\bar{x}, S_1 \cap S_2) = T(\bar{x}, S_1) \cap T(\bar{x}, S_2).$$

Convex cones:

Theorem Separating Hyperplane Theorem for Cones :

Let $\emptyset \neq K \subseteq \mathbb{R}^n$ be a closed convex cone and $z \in \mathbb{R}^n$. If $z \notin K$, then there exists $c \in \mathbb{R}^n$ such that $c^t x \geq 0$ for all $x \in K$ and $c^t z < 0$.

Proof. By the separating hyperplane theorem, there exists $c \in \mathbb{R}^n$ and $b \in \mathbb{R}$ such that $c^t x \ge b$ for all $c \in K$ and $c^t z < b$. We may assume that $b = \inf(c^t x : x \in K)$. Note that $0 \in K$ so $b \le 0$. We may assume that b < 0 since otherwise, we would be done. There exists $\bar{x} \in K$ with $b \le c^t \bar{x} < \frac{b}{2}$. However, K is a cone so $2\bar{x} \in K$ but $c^t 2\bar{x} < \frac{2b}{2} = b$.

Duality for cones: For $S \subseteq \mathbb{R}^n$, define

$$S^* = \{c \in \mathbb{R}^n : c^t x \ge 0, x \in S\}$$

Remarks:

- If $0 \in S$, then S^* is the set of all $c \in \mathbb{R}^n$ such that 0 minimizes $(c^t : x \in S)$.
- If K is a cone, then K^* is called the dual of K.

Lemma For any $S \subseteq \mathbb{R}^n$, S^* is a closed convex cone.