CO255 Assignment 2 Due: October 5

Submit your assignment at the start of class. If a solution is not essentially correct you will get no credit. You may discuss assignment solutions with another student as long as neither of you has yet written a solution; taking written notes during the discussion is considered cheating.

Problem 1: Consider the following system of inequalities:

(a) Using Fourier-Motzkin Elimination, eliminate the variable x_2 .

(b) Show that the original system is infeasible by giving an appropriate linear combination of the original constraints.

Problem 2:

(a) Let $P = \{x \in \mathbf{R}^n : Ax = b, x \ge 0\}$ where $A \in \mathbf{R}^{m \times n}$, with rank(A) = m, and $b \in \mathbf{R}^m$. We call $B \subseteq \{1, \ldots, n\}$ a basis if |B| = m and rank $(A_B) = m$. If B is a basis, the associated basic solution is the unique $x \in \mathbf{R}^n$ such that Ax = b and $x_i = 0$ for all $i \notin B$. A basic feasible solution is a basic solution that is non-negative. Prove that $x \in \mathbf{R}^n$ is an extreme point of P if and only if it is a basic feasible solution. (Hint: You may use results from assignment 1.)

(b) Let Z be a finite set of points in \mathbb{R}^m and let $x \in \operatorname{conv}(Z)$. Prove that there is a set $Z' \subseteq Z$ such that $x \in \operatorname{conv}(Z')$ and $|Z'| \leq m + 1$. (Hint: Use part (a).)

Problem 3: Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Prove that, if the system $Ax \leq b$ is infeasible, then there is an infeasible subsystem with at most n + 1 inequalities. (Hint: Use the Farkas Lemma and consider the matrix [A, b].)

Problem 4: Let $z, A_1, \ldots, A_n \in \mathbf{R}^m$. Prove that, if $z \notin \operatorname{conv}(A_1, \ldots, A_n)$ then there exist $\alpha \in \mathbf{R}^m$ and $\beta \in \mathbf{R}$ such that $\alpha^t x > \beta$ and $\alpha^t A_i \leq \beta$ for each $i \in \{1, \ldots, n\}$. (Hint: Apply the Farkas Lemma.)

Problem 5:[Bonus Problem] Let $P \subseteq \mathbf{R}^n$ be a polyhedron. Prove that a point $x \in \mathbf{R}^n$ is an extreme point of P if and only if there is a hyperplane H such that $H \cap P = \{x\}$.