CO255 Assignment 3

Due: October 19

• T

Submit your assignment at the start of class. If a solution is not essentially correct you will get no credit. You may discuss assignment solutions with another student as long as neither of you has yet written a solution; taking written notes during the discussion is considered cheating.

Problem 1: Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, and $c \in \mathbb{R}^n$.

(a) Consider the following systems:

(1)
$$\begin{cases} -c^{T}x + b^{T}y \leq 0 \\ Ax & \leq b \\ -A^{T}y = -c \\ y \geq 0 \end{cases}$$
 (2)
$$\begin{cases} -c^{T}x + b^{T}y < 0 \\ Ax & \leq zb \\ A^{T}y = zc \\ y \geq 0 \\ z \geq 0 \end{cases}$$

Prove that, if (1) is infeasible, then (2) is feasible. (Hint: Use the Farkas Lemma.)

(b) Consider the following LP and its dual:

(P)
$$\max(c^T x : Ax \le b)$$

(D) $\min(b^T y : A^T y = c, y \ge 0)$

Prove that, if (D) has an optimal solution \hat{y} , then (P) has an optimal solution \hat{x} , and $b^T \hat{y} = c^T \hat{x}$. (Do not reduce this to other versions of the Strong Duality Theorem, prove it following the proof of the Strong Duality Theorem.)

Problem 2: Consider the LP:

(P)
$$\max(x_1 + x_2 : x_1 - x_2 \le -1, -x_1 + x_2 \le -1, x_1, x_2 \ge 0).$$

(a) Write the dual (D) of (P).

(b) Show that (P) and (D) are both infeasible.

Problem 3: Let $A \in \mathbf{R}^{m \times n}$. Prove that, there exist $c \in \mathbf{R}^n$ and $b \in \mathbf{R}^m$ so that $\max(c^T x : Ax \leq b)$ and its dual are both infeasible if and only if there exist a nonzero vector $d \in \mathbf{R}^m$ satisfying $(A^T d = 0, d \geq 0)$ and a nonzero vector $z \in \mathbf{R}^n$ satisfying $Az \leq 0$.

Problem 4: Prove that, if $K = \{x \in \mathbb{R}^n : Ax \leq 0\}$, then there exist points $z_1, \ldots, z_s \in K$ such that $K = \operatorname{cone}(z_1, \ldots, z_s)$. (Hint: Consider the proof of Corollary 5 in the class notes.)

Problem 5: Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ with $b \ge 0$. Consider the system:

(P)
$$\min\left(\sum_{i=1}^{m} s_i : Ax + s = b, x \ge 0, s \ge 0\right).$$

(a) Show that (P) has an optimal solution. (Hint: You may use the Fundamental Theorem.)

(b) Show that the optimal value of (P) is 0 if and only if the system $(Ax = b, x \ge 0)$ is feasible.

Problem 6: [Bonus Problem] Let $A \in \mathbb{R}^{m \times n}$.

(a) Show that, if $\bar{p} \in \mathbf{R}^n$ satisfies $(p_1 + \cdots + p_n = 1, p \ge 0)$ and $\bar{q} \in \mathbf{R}^n$ satisfies $(q_1 + \cdots + q_m = 1, q \ge 0)$, then

$$\min_{i \in \{1,...,m\}} \quad \sum_{j=1}^{n} a_{ij} \bar{p}_j \leq \max_{j \in \{1,...,n\}} \quad \sum_{i=1}^{m} a_{ij} \bar{q}_i.$$

(b) Show that there exist \bar{p} and \bar{q} attaining equality. (Hint: Remember Rose and Colin?)