
CO 330 Fall 2011 Midterm Exam.
6:00 - 7:50, Monday, Nov. 7th 2011.

There are five questions. Each question is worth six points.

1(a) Prove the following binomial identity for all integers n ≥ 1.(
2n

n

)
= 2

n−1∑
j=0

(
n− 1 + j

j

)
.

The LHS is the number of lattice paths from (0, 0) to (n, n). Each
lattice path in the set L(n, n) uses exactly one of the edges (n−1, j)→
(n, j) or (j, n−1)→ (j, n) for some 0 ≤ j ≤ n−1. The lattice paths in
L(n, n) using the edge (n−1, j)→ (n, j) are in bijection with the set of
lattice paths from (0, 0) to (n−1, j), so there are |L(n−1, j)| =

(
n−1+j

j

)
of these. The lattice paths in L(n, n) using the edge (j, n− 1)→ (j, n)
are in bijection with the set of lattice paths from (0, 0) to (j, n− 1), so
there are |L(j, n − 1)| =

(
j+n−1
n−1

)
=
(
n−1+j

j

)
of these. Together, these

observations prove the formula.

(b) Which of the following is a correct q-binomial generalization of
the formula in part (a)? (No explanation is needed.)

(i)

[
2n
n

]
q

= 2
n−1∑
j=0

[
n− 1 + j

j

]
q

(ii)

[
2n
n

]
q

=
n−1∑
j=0

(qn−j + qnj)

[
n− 1 + j

j

]
q

(iii)

[
2n
n

]
q

=
n−1∑
j=0

(qj + qn(n−j))

[
n− 1 + j

j

]
q

(iv)

[
2n
n

]
q

=
n−1∑
j=0

(qj + qj(n−j))

[
n− 1 + j

j

]
q

Equation (iii) is correct, as one sees by keeping track of the areas of
the lattice paths in the proof of part (a).

2. Consider a convex polygon with one edge marked with an arrow
1



2

Figure 1. A dissection ∆ ∈ K with p(∆) = 6.

(to eliminate the dihedral symmetry). Let K be the set of all ways of
dissecting such a polygon into triangles and quadrilaterals by drawing
chords between some of the vertices. An example is shown in Figure
1. If ∆ is such a dissection, then let p(∆) be the number of triangles
and quadrilaterals that it contains. So, for the example in Figure 1,
p(∆) = 6.

(a) Explain why the generating function K(x) =
∑

∆∈K x
p(∆) satisfies

the functional equation

K = x(1 +K)2(2 +K).

Delete the edge of the polygon marked with the arrow (the “root
edge”), and put arrows on the other edges of the triangle or quadri-
lateral that contains the root edge to form a directed path from the
tail to the head of the root edge. The result is an ordered sequence of
either two or three pieces – each piece is either a single edge marked
with an arrow (for which p = 0) or a dissection in K. Conversely, given
a sequence of two or three such pieces, they can be stitched together to
give a dissection in K with one more polygon (triangle or quadrilateral)
than the total number of polygons in the pieces. That is, there is a
bijection

K 
 ({↑} ∪K)2 ∪ ({↑} ∪K)3
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in which ↑ denotes a single edge marked with an arrow. This yields the
functional equation

K = x((1 +K)2 + (1 +K)3) = x(1 +K)2(2 +K),

as claimed.

(b) Use part (a) to show that for all n ≥ 1, the number of ∆ ∈ K

with p(∆) = n is

1

n

n−1∑
j=0

(
2n

j

)(
n

j + 1

)
2j+1.

By LIFT, the number of ∆ ∈ K with p(∆) = n is

[xn]K(x) =
1

n
[un−1](1 + u)2n(2 + u)n

=
1

n
[un−1]

2n∑
j=0

(
2n

j

)
uj

n∑
i=0

(
n

i

)
2n−iui

=
1

n

n−1∑
j=0

(
2n

j

)(
n

n− 1− j

)
2n−(n−1−j)

=
1

n

n−1∑
j=0

(
2n

j

)(
n

j + 1

)
2j+1,

as claimed.

3. In a plane planted tree, a middle child is a node that is neither
the leftmost child nor the rightmost child of its parent. Let µ(T ) denote
the number of middle children of the PPT T . Consider the two-variable
generating function

U(x, y) :=
∑
T∈U

xn(T )yµ(T ),

in which the sum is over the set U of all PPTs.

(a) Explain why U(x, y) satisfies the functional equation

U = x

(
1 + U +

U2

1− yU

)
.
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By the recursive structure of the set of PPTs, we have

U 
 {�} ×
∞⋃
d=0

Ud

T ↔ (�, S1, S2, ..., Sd)

n(T ) = 1 + n(S1) + n(S2) + · · ·n(Sd)

µ(T ) = (d− 2)χ[d ≥ 2] + µ(S1) + · · ·+ µ(Sd)

In the expression for µ(T ), the term (d − 2)χ[d ≥ 2] is the number of
middle children of the root node: all other middle children are counted
in exactly one of the subtrees S1 to Sd. Thus the generating function
satisfies

U(x, y) = x

(
1 + U(x, y) +

∞∑
d=2

yd−2U(x, y)d

)

= x

(
1 + U +

U2

1− yU

)
,

as claimed.
(b) Use part (a) to show that the average value of µ(T ) among all
1
n

(
2n−2
n−1

)
PPTs with n nodes is

µ(n) =
(n− 2)(n− 3)

4n− 6
.

By LIFT, the sum of µ(T ) over all PPTs with n nodes is

[xn]
∂

∂y
U(x, y)

∣∣∣∣
y=1

=
1

n
[un−1]

∂

∂y

(
1 + u+

u2

1− yu

)n∣∣∣∣
y=1

= [un−1]

(
1

1− u

)n−1
u2(−1)(−u)

(1− u)2

= [un−1]
u3

(1− u)n+1
= [un−4]

∞∑
k=0

(
n+ k

n

)
uk =

(
2n− 4

n

)
.
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Therefore, the average in question is

µ(n) =

(
2n−4
n

)
1
n

(
2n−2
n−1

)
=

n(2n− 4)!(n− 1)!(n− 1)!

n!(n− 4)!(2n− 2)!

=
(n− 1)(n− 2)(n− 3)

(2n− 2)(2n− 3)
=

(n− 2)(n− 3)

4n− 6
,

as claimed.

4. (a) Let A be the set of partitions in which odd parts oc-
cur at most once each. Obtain a formula for the generating function
A(x) =

∑
λ∈A x

n(λ).

This is a direct application of Theorem 9.8: Mj = N if j = 2i is even,
while Mj = {0, 1} of j = 2i− 1 is odd. Thus parts of size 2i contribute
the factor

1 + x2i + x4i + x6i + · · · = 1

1− x2i

while parts of size 2i− 1 contribute the factor 1 + x2i−1. Therefore

A(x) =
∞∏
i=1

1 + x2i−1

1− x2i
.

(b) Let B be the set of partitions in which every even part is a multiple
of 4. Explain why

B(x) =
∑
λ∈B

xn(λ) =
∞∏
i=1

1

(1− x4i)(1− x2i−1)
.

Again, this is a direct application of Theorem 9.8: we have Mj = N for
all j ≡ 0, 1, 3 (mod 4), but Mj = {0} for j ≡ 2 (mod 4). Thus

B(x) =
∏

j≡0,1,3 (mod 4)

1

1− xj

=
∞∏
i=1

1

(1− x4i)(1− x4i−3)(1− x4i−1)

=
∞∏
i=1

1

(1− x4i)(1− x2i−1)
,
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as claimed. In the last equality, we used the fact that
∞∏
i=1

(1− x4i−3)(1− x4i−1) =
∞∏
i=1

(1− x2i−1).

(c) Show that A(x) = B(x). (Thus, for all n ≥ 0 the number of
partitions of size n in A equals the number of partitions of size n in
B.)

Here we go!

A(x) =
∞∏
i=1

1 + x2i−1

1− x2i

=
∞∏
i=1

1 + x2i−1

(1− xi)(1 + xi)

=
∞∏
i=1

1

(1− xi)(1 + x2i)

=
∞∏
i=1

1− x2i

(1− xi)(1 + x2i)(1− x2i)

=
∞∏
i=1

1− x2i

(1− xi)(1− x4i)

=
∞∏
i=1

1

(1− x2i−1)(1− x4i)
= B(x),

as claimed. In the last equality we used the fact that
∞∏
i=1

1− x2i

1− xi
=
∞∏
i=1

1

1− x2i−1
.

5. Let fk(x) for k ≥ 1 be a sequence of formal power series in R[[x]],
in which R is a commutative ring. Assume that for every J ∈ N there
exists a K(J) ≥ 1 such that if k ≥ K(J) then the index of fk(x) is at
least J : I(fk) ≥ J . Show that the infinite product

∞∏
k=1

(1 + fk(x))

converges.
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We must show that the limit

lim
L→∞

L∏
k=1

(1 + fk(x))

exists. To do this we must show that for each n ∈ N, the sequence
of coefficients [xn]

∏L
k=1(1 + fk(x)) is eventually constant as L → ∞.

Consider any n ∈ N, and let K(n+1) be such that the index of fk(x) is
at least n+1 for all k ≥ K(n+1). (By the assumption in the question,
such a K(n + 1) exists.) So fk(x) = xn+1gk(x) for some power series
gk(x) ∈ R[[x]], for each k ≥ K(n+ 1). Now, for all L ≥ K(n+ 1),

[xn]
L∏
k=1

(1 + fk(x)) = [xn]]

K(n+1)−1∏
k=1

(1 + fk(x)),

since for k ≥ K(n + 1) the factors 1 + fk(x) = 1 + xn+1gk(x) produce
powers of x larger than xn except when choosing the term 1 from each
of them. Since the RHS is independent of L ≥ K(n+ 1) the sequence

[xn]
∏L

k=1(1 + fk(x)) is eventually constant as L→∞. Thus, the limit
exisits, and so

∞∏
k=1

(1 + fk(x))

converges.


