
CO 330 Fall 2011 Solutions #2
due Friday, Oct. 7.

Exercises: 3.3, 3.6, 3.8, 5.1, 5.3, 5.4, 5.7.

3.3. To prove the polynomial identity

(x+ y)n =
∞∑
k=0

(
n

k

)
xkyn−k

it suffices to prove the numerical identity

(a+ b)n =
∞∑
k=0

(
n

k

)
akbn−k

for all natural numbers a, b ∈ N. Let A be a set of size |A| = a and let B
be a set of size |B| = b, and assume that A∩B = ∅. Then A∪B has size
a+ b, and by Example 1.7, the number of functions f : Nn → A∪B is
(a+b)n. Consider such a function f : Nn → A∪B, and let S = f−1(A).
This is a k-element subset of Nn, for some 0 ≤ k ≤ n. Consider the
functions g = f |S (f restricted to S) and h = f |NnrS (f restricted to
Nn r S). From the way that S = f−1(A) is defined it follows that
g : S → A and h : (Nn r S) → B. This construction f 7→ (S, g, h)
determines a function from F(Nn, A ∪B) to⋃

S∈P(Nn)

{S} × F(S,A)× F(Nn r S,B).

This is in fact a bijection: the inverse construction starts with (S, g, h)
in which S ⊆ Nn, g : S → A and h : (Nn r S)→ B, and produces the
function φ : Nn → A ∪B defined by

φ(i) =

{
g(i) if i ∈ S,
h(i) if i 6∈ S,

for all i ∈ Nn. Thus we have a bijection

F(Nn, A ∪B) 

⋃

S∈P(Nn)

{S} × F(S,A)× F(Nn r S,B).

If |S| = k then |Nn r S| = n− k, so that |F(S,A)| = ak and |F(Nn r
S,B) = bn−k. Since there are

(
n
k

)
subsets of Nn of size k (for each

1



2

0 ≤ k ≤ n), by taking the cardinalities of the sets on both sides of the
bijection, we obtain

(a+ b)n =
n∑

k=0

(
n

k

)
akbn−k,

as required. That completes the proof.

3.6. To prove the polynomial identity(
x+ 1 + n

n

)
=

n∑
j=0

(
a+ j

j

)(
x− a+ n− j

n− j

)
it suffices to prove the numerical identity(

b+ 1 + n

n

)
=

n∑
j=0

(
a+ j

j

)(
b− a+ n− j

n− j

)
for all integers b that are larger than or equal to a. So, fix a natural
number b ≥ a. The LHS is the number of lattice paths from (0, 0) to
(b+1, n); that is, #L(b+1, n) =

(
b+1+n

n

)
. Similarly, on the RHS

(
a+j
j

)
is

the number of lattice paths from (0, 0) to (a, j) for each 0 ≤ j ≤ n. This
is a starting point to figure out what the formula is saying. Eventually,
we realize that every lattice path from (0, 0) to (b + 1, n) uses exactly
one edge of the form (a, j) → (a + 1, j) for some 0 ≤ j ≤ n. Those
paths P that use such an edge with a given value of j have the form
P = QEQ′ in which Q ∈ L(a, j) and Q′ ∈ L(b− a, n− j). Conversely,
any such pair of lattice paths Q,Q′ produces a lattice path QEQ′ from
(0, 0) to (b+ 1, n). In summary, we have a bijection

L(b+ 1, n) 

n⋃

j=0

L(a, j)× {E} × L(b− a, n− j).

Taking the cardinality of each side yields the desired binomial identity.

3.8. To prove the polynomial identity

xn =
n∑

k=0

k!S(n, k)

(
x

k

)
,

it suffices to prove the numerical identity

an =
n∑

k=0

k!S(n, k)

(
a

k

)
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for all a ∈ N. Let N be an n-element set, and let A be an a-element
set. The LHS is the number of functions from N to A: |F(N,A)| = an.
Consider such a function f : N → A. Define a set partition πf of N by
saying that i, j ∈ N are in the same block of πf if and only if f(i) =
f(j). There are S(n, k) such set partitions with k blocks, by definition
of the Stirling numbers (of the second kind). Given πf = {B1, ..., Bk},
we can define a function g : πf → A by putting g(Bi) = f(j) for any
j ∈ Bi: from the way πf is defined, this function g : πf → A does
not depend on the choices of j ∈ Bi made in its definition. Also from
the way that πf is defined, the function g : πf → A is an injection.
The injection g : πf → A is determined by its range R ∈ B(A, k)
and a bijection σ : πf → R from the domain to the range. Thus we
have a construction that starts with f : N → A and produces a triple
(πf , R, σ).

Conversely, from a triple (π, S, τ) with π a set partition of N with
k blocks (for some 0 ≤ k ≤ n), S ⊆ A a subset of A of size k, and τ :
π → S a bijection, we can construct a function ϕ : N → A by putting
ϕ(i) = τ(B) where B is the unique block of π that contains i ∈ N .
This defines a bijection between the set of all functions f : N → A
and the set of all triples (π, S, τ) described above. (The set-theoretic
notation for the set of all such triples is a bit cumbersome.)

The number k of blocks of π is in the range 0 ≤ k ≤ n. If π has k
blocks then there are S(n, k) choices for π,

(
a
k

)
choices for S, and k!

choices for τ . Thus,

an =
∞∑
k=0

S(n, k)

(
a

k

)
k!,

as claimed.

5.1. This is the “q–analogue” of Example 3.3. The bijection at the
heart of the matter is

L(a+ 1, b) 

b⋃

j=0

(
L(a, j)× {ENb−j}

)
P ↔ (Q,ENb−j)

area(P ) = area(Q) + (a+ 1)(b− j).
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(The last equation is easily seen by examining Figure 3.2 in the Course
Notes.) It follows that[

a+ 1 + b
b

]
q

=
∑

P∈L(a+1,b)

qarea(P )

=
b∑

j=0

∑
Q∈L(a,j)

qarea(Q)+(a+1)(b−j)

=
b∑

j=0

q(a+1)(b−j)
[
a+ j
j

]
q

.

That does it!

5.3. This is the “q–analogue” of Exercise 3.5. Recall that the solution
to Exercise 3.5 on HW#1 used subsets instead of lattice paths. We’ll
do the same for this question, using the fact that

qk(k+1)/2

[
n
k

]
q

=
∑

A∈B(n,k)

qsum(A).

(Here B(n, k) is the set of all k–element subsets of Nn.) The bijection
at the heart of the matter is

B(m+ n, k) 

k⋃

j=0

(B(m, j)×B(n, k − j))

A ↔ (S, T )

To go from the LHS to the RHS we start with A ∈ B(m + n, k) and
construct S := A ∩Nm and

T := {v ∈ Nn : v +m ∈ A}.

Conversely, from (S, T ) on the RHS we construct A := S ∪ {v + m :
v ∈ T}. These functions are mutually inverse bijections, as one can
check. Keeping track of the sums of the sets in the bijections, we see
that

sum(A) = sum(S) + sum(T ) +m · (#T ).
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Now we follow this information through the bijection. . .

qk(k+1)/2

[
n
k

]
q

=
∑

A∈B(n,k)

qsum(A)

=
k∑

j=0

∑
S∈B(m,j)

∑
T∈B(n,k−j)

qsum(S)+sum(T )+m(k−j)

=
k∑

j=0

qm(k−j)qj(j+1)/2

[
m
j

]
q

q(k−j)(k−j+1)/2

[
n

k − j

]
q

.

It remains to clean up the exponents of those extra factors of q. Mul-
tiply both sides by q−k(k+1)/2. The exponent of q in the j–th term on
the RHS is then

m(k − j) + j(j + 1)/2 + (k − j)(k − j + 1)/2− k(k + 1)/2

= m(k − j) +
1

2

[
j2 + j + k2 − 2kj + j2 + k − j − k2 − k

]
= m(k − j) + j2 − kj = (m− j)(k − j).

Therefore,

[
n
k

]
q

=
k∑

j=0

q(m−j)(k−j)
[
m
j

]
q

[
n

k − j

]
q

,

as was to be shown.

5.4. Let’s continue from the solution to Exercise 3.6 given above.
There is a bijection

L(b+ 1, n) 

n⋃

j=0

L(a, j)× {E} × L(b− a, n− j)

P ↔ (Q,E, Q′)

In this bijection, if P ↔ (Q,E, Q′) and Q ∈ L(a, j), then

area(P ) = area(Q) + (a+ 1)(n− j) + area(Q′).
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(This is easy to see if you draw a picture.) It follows that[
b+ 1
n

]
q

=
∑

P∈L(b+1,n)

qarea(P )

=
n∑

j=0

∑
(Q,Q′)∈L(a,j)×L(b−a,n−j)

qarea(Q)+(a+1)(n−j)+area(R)

=
n∑

j=0

q(a+1)(n−j)

(∑
Q

∈ L(a, j)qarea(Q)

) ∑
Q′∈L(b−a,n−j)

qarea(Q
′)


=

n∑
j=0

q(a+1)(n−j)
[
a+ j
j

]
q

[
b− a+ n− j

n− j

]
q

,

as was to be proved.

5.7. To prove that [
a+ b
b

]
q

=
∑

P∈L(a,b)

qarea(P )

we use the bijection L(a, b) 
 B(a+ b, b) of Example 3.1 and the fact
(Theorem 5.5), that

qb(b+1)/2

[
a+ b
b

]
q

=
∑

A∈B(a+b,b)

qsum(A).

If the lattice path P corresponds to the subset A in this bijection, then

area(P ) = #EA = sum(A)− b(b+ 1)/2,

in which EA is the set defined in Lemma 5.6. To see this, let P =
s1s2 . . . sa+b in which each step si is either east E or north N. Then
A = {i ∈ Na+b : si = N}. The area of P is the number of unit
squares which have corners with integer coordinates and lie in the
compact region enclosed by P and the line segments (0, 0) → (0, b)
and (0, b) → (a, b). Each such square � is directly above a unique E
step of P , say sz = E, and directly to the left of a unique N step of P ,
say sa = N. Now this pair (a, z) has a ∈ A and z 6∈ A and a > z, so
that (a, z) ∈ EA. Conversely, from any pair (a, z) ∈ EA we can find the
unit square � in R2 that is directly above the step sz = E and directly
left of the step sa = N. Thus, there is a bijection between the pairs
in EA and the unit squares comprising the area of P . This shows that
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area(P ) = #EA, and suffices to prove the claim.


