CO 330 Fall 2011 Solutions $#2$ due Friday, Oct. 7.

Exercises: 3.3, 3.6, 3.8, 5.1, 5.3, 5.4, 5.7.

3.3. To prove the polynomial identity

$$
(x+y)^n = \sum_{k=0}^{\infty} \binom{n}{k} x^k y^{n-k}
$$

it suffices to prove the numerical identity

$$
(a+b)^n = \sum_{k=0}^{\infty} \binom{n}{k} a^k b^{n-k}
$$

for all natural numbers $a, b \in \mathbb{N}$. Let A be a set of size $|A| = a$ and let B be a set of size $|B| = b$, and assume that $A \cap B = \emptyset$. Then $A \cup B$ has size $a + b$, and by Example 1.7, the number of functions $f : N_n \to A \cup B$ is $(a+b)^n$. Consider such a function $f: N_n \to A \cup B$, and let $S = f^{-1}(A)$. This is a k-element subset of N_n , for some $0 \leq k \leq n$. Consider the functions $g = f|_S$ (f restricted to S) and $h = f|_{N_n \setminus S}$ (f restricted to $N_n \setminus S$). From the way that $S = f^{-1}(A)$ is defined it follows that $g : S \to A$ and $h : (N_n \setminus S) \to B$. This construction $f \mapsto (S, g, h)$ determines a function from $\mathcal{F}(N_n, A \cup B)$ to

$$
\bigcup_{S \in \mathcal{P}(N_n)} \{S\} \times \mathcal{F}(S, A) \times \mathcal{F}(N_n \setminus S, B).
$$

This is in fact a bijection: the inverse construction starts with (S, q, h) in which $S \subseteq N_n$, $g : S \to A$ and $h : (N_n \setminus S) \to B$, and produces the function $\phi: N_n \to A \cup B$ defined by

$$
\phi(i) = \begin{cases} g(i) & \text{if } i \in S, \\ h(i) & \text{if } i \notin S, \end{cases}
$$

for all $i \in \mathcal{N}_n$. Thus we have a bijection

$$
\mathcal{F}(N_n, A \cup B) \rightleftharpoons \bigcup_{S \in \mathcal{P}(N_n)} \{S\} \times \mathcal{F}(S, A) \times \mathcal{F}(N_n \setminus S, B).
$$

If $|S| = k$ then $|N_n \setminus S| = n - k$, so that $|\mathcal{F}(S, A)| = a^k$ and $|\mathcal{F}(N_n \setminus S)| = k$ $(S, B) = b^{n-k}$. Since there are $\binom{n}{k}$ $\binom{n}{k}$ subsets of N_n of size k (for each 1

 $0 \leq k \leq n$, by taking the cardinalities of the sets on both sides of the bijection, we obtain

$$
(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k},
$$

as required. That completes the proof.

3.6. To prove the polynomial identity

$$
\binom{x+1+n}{n} = \sum_{j=0}^{n} \binom{a+j}{j} \binom{x-a+n-j}{n-j}
$$

it suffices to prove the numerical identity

$$
\binom{b+1+n}{n} = \sum_{j=0}^{n} \binom{a+j}{j} \binom{b-a+n-j}{n-j}
$$

for all integers b that are larger than or equal to a . So, fix a natural number $b \ge a$. The LHS is the number of lattice paths from $(0,0)$ to $(b+1, n);$ that is, $\#\mathcal{L}(b+1, n) = \binom{b+1+n}{n}$ $\binom{1+n}{n}$. Similarly, on the RHS $\binom{a+j}{j}$ j^{+j}) is the number of lattice paths from $(0, 0)$ to (a, j) for each $0 \le j \le n$. This is a starting point to figure out what the formula is saying. Eventually, we realize that every lattice path from $(0, 0)$ to $(b + 1, n)$ uses exactly one edge of the form $(a, j) \rightarrow (a + 1, j)$ for some $0 \leq j \leq n$. Those paths P that use such an edge with a given value of j have the form $P = Q \mathsf{E} Q'$ in which $Q \in \mathcal{L}(a, j)$ and $Q' \in \mathcal{L}(b - a, n - j)$. Conversely, any such pair of lattice paths Q, Q' produces a lattice path $Q \in Q'$ from $(0, 0)$ to $(b + 1, n)$. In summary, we have a bijection

$$
\mathcal{L}(b+1,n) \rightleftharpoons \bigcup_{j=0}^{n} \mathcal{L}(a,j) \times \{\mathsf{E}\} \times \mathcal{L}(b-a,n-j).
$$

Taking the cardinality of each side yields the desired binomial identity.

3.8. To prove the polynomial identity

$$
x^n = \sum_{k=0}^n k! S(n,k) \binom{x}{k},
$$

it suffices to prove the numerical identity

$$
a^n = \sum_{k=0}^n k! S(n,k) \binom{a}{k}
$$

for all $a \in \mathbb{N}$. Let N be an n-element set, and let A be an a-element set. The LHS is the number of functions from N to A: $|\mathcal{F}(N, A)| = a^n$. Consider such a function $f : N \to A$. Define a set partition π_f of N by saying that $i, j \in N$ are in the same block of π_f if and only if $f(i) =$ $f(j)$. There are $S(n, k)$ such set partitions with k blocks, by definition of the Stirling numbers (of the second kind). Given $\pi_f = \{B_1, ..., B_k\},\$ we can define a function $g : \pi_f \to A$ by putting $g(B_i) = f(j)$ for any $j \in B_i$: from the way π_f is defined, this function $g : \pi_f \to A$ does not depend on the choices of $j \in B_i$ made in its definition. Also from the way that π_f is defined, the function $g : \pi_f \to A$ is an injection. The injection $g : \pi_f \to A$ is determined by its range $R \in \mathcal{B}(A, k)$ and a bijection $\sigma : \pi_f \to R$ from the domain to the range. Thus we have a construction that starts with $f : N \to A$ and produces a triple $(\pi_f, R, \sigma).$

Conversely, from a triple (π, S, τ) with π a set partition of N with k blocks (for some $0 \le k \le n$), $S \subseteq A$ a subset of A of size k, and τ : $\pi \to S$ a bijection, we can construct a function $\varphi : N \to A$ by putting $\varphi(i) = \tau(B)$ where B is the unique block of π that contains $i \in N$. This defines a bijection between the set of all functions $f: N \to A$ and the set of all triples (π, S, τ) described above. (The set-theoretic notation for the set of all such triples is a bit cumbersome.)

The number k of blocks of π is in the range $0 \leq k \leq n$. If π has k blocks then there are $S(n,k)$ choices for π , $\begin{pmatrix} a \\ k \end{pmatrix}$ $\binom{a}{k}$ choices for S, and k! choices for τ . Thus,

$$
a^{n} = \sum_{k=0}^{\infty} S(n,k) \binom{a}{k} k!,
$$

as claimed.

5.1. This is the "q–analogue" of Example 3.3. The bijection at the heart of the matter is

$$
\mathcal{L}(a+1,b) \quad \rightleftharpoons \quad \bigcup_{j=0}^{b} \left(\mathcal{L}(a,j) \times \{ \mathsf{EN}^{b-j} \} \right)
$$
\n
$$
P \quad \leftrightarrow \quad (Q, \mathsf{EN}^{b-j})
$$
\n
$$
\text{area}(P) \quad = \quad \text{area}(Q) + (a+1)(b-j).
$$

(The last equation is easily seen by examining Figure 3.2 in the Course Notes.) It follows that

$$
\begin{aligned}\n\left[\begin{array}{c} a+1+b \\ b \end{array}\right]_q &= \sum_{P \in \mathcal{L}(a+1,b)} q^{\text{area}(P)} \\
&= \sum_{j=0}^b \sum_{Q \in \mathcal{L}(a,j)} q^{\text{area}(Q)+(a+1)(b-j)} \\
&= \sum_{j=0}^b q^{(a+1)(b-j)} \left[\begin{array}{c} a+j \\ j \end{array}\right]_q.\n\end{aligned}
$$

That does it!

5.3. This is the " q -analogue" of Exercise 3.5. Recall that the solution to Exercise 3.5 on HW#1 used subsets instead of lattice paths. We'll do the same for this question, using the fact that

$$
q^{k(k+1)/2} \left[\begin{array}{c} n \\ k \end{array} \right]_q = \sum_{A \in \mathcal{B}(n,k)} q^{\text{sum}(A)}.
$$

(Here $\mathcal{B}(n,k)$ is the set of all k–element subsets of N_n .) The bijection at the heart of the matter is

$$
\mathcal{B}(m+n,k) \quad \rightleftharpoons \quad \bigcup_{j=0}^{k} \left(\mathcal{B}(m,j) \times \mathcal{B}(n,k-j) \right)
$$
\n
$$
A \quad \leftrightarrow \quad (S,T)
$$

To go from the LHS to the RHS we start with $A \in \mathcal{B}(m+n, k)$ and construct $S := A \cap N_m$ and

$$
T := \{ v \in N_n : v + m \in A \}.
$$

Conversely, from (S, T) on the RHS we construct $A := S \cup \{v + m :$ $v \in T$. These functions are mutually inverse bijections, as one can check. Keeping track of the sums of the sets in the bijections, we see that

$$
sum(A) = sum(S) + sum(T) + m \cdot (\#T).
$$

4

Now we follow this information through the bijection. . .

$$
q^{k(k+1)/2} \begin{bmatrix} n \\ k \end{bmatrix}_q = \sum_{A \in \mathcal{B}(n,k)} q^{\text{sum}(A)}
$$

=
$$
\sum_{j=0}^k \sum_{S \in \mathcal{B}(m,j)} \sum_{T \in \mathcal{B}(n,k-j)} q^{\text{sum}(S) + \text{sum}(T) + m(k-j)}
$$

=
$$
\sum_{j=0}^k q^{m(k-j)} q^{j(j+1)/2} \begin{bmatrix} m \\ j \end{bmatrix}_q q^{(k-j)(k-j+1)/2} \begin{bmatrix} n \\ k-j \end{bmatrix}_q.
$$

It remains to clean up the exponents of those extra factors of q. Multiply both sides by $q^{-k(k+1)/2}$. The exponent of q in the j-th term on the RHS is then

$$
m(k - j) + j(j + 1)/2 + (k - j)(k - j + 1)/2 - k(k + 1)/2
$$

= $m(k - j) + \frac{1}{2} [j^2 + j + k^2 - 2kj + j^2 + k - j - k^2 - k]$
= $m(k - j) + j^2 - kj = (m - j)(k - j).$

Therefore,

$$
\left[\begin{array}{c} n \\ k \end{array}\right]_q = \sum_{j=0}^k q^{(m-j)(k-j)} \left[\begin{array}{c} m \\ j \end{array}\right]_q \left[\begin{array}{c} n \\ k-j \end{array}\right]_q,
$$

as was to be shown.

5.4. Let's continue from the solution to Exercise 3.6 given above. There is a bijection

$$
\mathcal{L}(b+1,n) \quad \rightleftharpoons \quad \bigcup_{j=0}^{n} \mathcal{L}(a,j) \times \{\mathsf{E}\} \times \mathcal{L}(b-a,n-j)
$$
\n
$$
P \quad \leftrightarrow \quad (Q,\mathsf{E},Q')
$$

In this bijection, if $P \leftrightarrow (Q, \mathsf{E}, Q')$ and $Q \in \mathcal{L}(a, j)$, then

area
$$
(P)
$$
 = area (Q) + $(a + 1)(n - j)$ + area (Q') .

(This is easy to see if you draw a picture.) It follows that

$$
\begin{aligned}\n\left[\begin{array}{c} b+1 \\ n \end{array}\right]_q &= \sum_{P \in \mathcal{L}(b+1,n)} q^{\text{area}(P)} \\
&= \sum_{j=0}^n \sum_{(Q,Q') \in \mathcal{L}(a,j) \times \mathcal{L}(b-a,n-j)} q^{\text{area}(Q)+(a+1)(n-j)+\text{area}(R)} \\
&= \sum_{j=0}^n q^{(a+1)(n-j)} \left(\sum_Q \in \mathcal{L}(a,j) q^{\text{area}(Q)} \right) \left(\sum_{Q' \in \mathcal{L}(b-a,n-j)} q^{\text{area}(Q')} \right) \\
&= \sum_{j=0}^n q^{(a+1)(n-j)} \left[\begin{array}{c} a+j \\ j \end{array} \right]_q \left[\begin{array}{c} b-a+n-j \\ n-j \end{array} \right]_q, \n\end{aligned}
$$

as was to be proved.

5.7. To prove that

$$
\left[\begin{array}{c} a+b \\ b \end{array}\right]_q = \sum_{P \in \mathcal{L}(a,b)} q^{\text{area}(P)}
$$

we use the bijection $\mathcal{L}(a, b) \rightleftharpoons \mathcal{B}(a + b, b)$ of Example 3.1 and the fact (Theorem 5.5), that

$$
q^{b(b+1)/2} \left[\begin{array}{c} a+b \\ b \end{array} \right]_q = \sum_{A \in \mathcal{B}(a+b,b)} q^{\text{sum}(A)}.
$$

If the lattice path P corresponds to the subset A in this bijection, then

$$
area(P) = \#E_A = sum(A) - b(b+1)/2,
$$

in which E_A is the set defined in Lemma 5.6. To see this, let $P =$ $s_1 s_2 \dots s_{a+b}$ in which each step s_i is either east **E** or north N. Then $A = \{i \in N_{a+b} : s_i = \mathbb{N}\}\.$ The area of P is the number of unit squares which have corners with integer coordinates and lie in the compact region enclosed by P and the line segments $(0, 0) \rightarrow (0, b)$ and $(0, b) \rightarrow (a, b)$. Each such square \square is directly above a unique E step of P, say $s_z = E$, and directly to the left of a unique N step of P, say $s_a = N$. Now this pair (a, z) has $a \in A$ and $z \notin A$ and $a > z$, so that $(a, z) \in E_A$. Conversely, from any pair $(a, z) \in E_A$ we can find the unit square \Box in \mathbb{R}^2 that is directly above the step $s_z = \mathsf{E}$ and directly left of the step $s_a = N$. Thus, there is a bijection between the pairs in E_A and the unit squares comprising the area of P . This shows that

 $area(P) = \#E_A$, and suffices to prove the claim.