CO 330 Fall 2011 Solutions #2
due Friday, Oct. 7.

Exercises: 3.3, 3.6, 3.8, 5.1, 5.3, 5.4, 5.7.

3.3. To prove the polynomial identity

(z+y)" = i <Z) atyn

k=0

it suffices to prove the numerical identity

a+b)" = n) atbpnr
=3
for all natural numbers a,b € N. Let A be a set of size |[A| = a and let B
be a set of size | B| = b, and assume that ANB = &. Then AUB has size
a+ b, and by Example 1.7, the number of functions f : N, - AU B is
(a+b)". Consider such a function f : N,, = AUB, and let S = f~1(A).
This is a k-element subset of NV, for some 0 < k£ < n. Consider the
functions g = fl|g (f restricted to S) and h = f|n,s (f restricted to
N, ~ S). From the way that S = f~'(A) is defined it follows that
g:S — Aand h: (N, S) = B. This construction f +— (5,g,h)
determines a function from F(V,, AU B) to

U {8} xF(S,4) x F(N, \ S, B).
SeP(Ny)

This is in fact a bijection: the inverse construction starts with (.5, g, h)
in which SC N,,, g: S - Aand h: (N, \S) — B, and produces the
function ¢ : N,, — AU B defined by

N~ Joglt) ifies,
o) = { hi) it i S,
for all 7 € N,,. Thus we have a bijection

F(N,, AUB)= | J {8} x F(S.A) x F(N, \ S, B).
SEP(Ny)
If |S| = k then [N, . S| =n — k, so that |F(S, A)| = a* and |F(N, ~

S,B) = b"*. Since there are (Z) subsets of N, of size k (for each
1
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0 < k < n), by taking the cardinalities of the sets on both sides of the
bijection, we obtain

(a+b)" = i (Z) a"o"k,

k=0
as required. That completes the proof.

3.6. To prove the polynomial identity

(R

it suffices to prove the numerical identity
(b+1+n) _i (a—i—j) (b—a—i—n—j)

n =\ 7 n—j
for all integers b that are larger than or equal to a. So, fix a natural
number b > a. The LHS is the number of lattice paths from (0,0) to
(b+1,n); that is, #L(b+1,n) = (Hif”). Similarly, on the RHS (aj.j) is
the number of lattice paths from (0, 0) to (a, 7) for each 0 < j7 < n. This
is a starting point to figure out what the formula is saying. Eventually,
we realize that every lattice path from (0,0) to (b + 1,n) uses exactly
one edge of the form (a,j) — (a+ 1,j) for some 0 < j < n. Those
paths P that use such an edge with a given value of j have the form
P = QEQ'" in which Q € L(a,j) and Q" € L(b— a,n — j). Conversely,
any such pair of lattice paths @, Q" produces a lattice path QEQ’ from
(0,0) to (b+ 1,n). In summary, we have a bijection

Lh+1,n) = UL(a,j) x {E} x L(b—a,n — j).

Taking the cardinality of each side yields the desired binomial identity.

3.8. To prove the polynomial identity

o = kz; K1S(n, k) (i)

it suffices to prove the numerical identity

" = ; k1S(n, k) (Z)
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for all @ € N. Let NV be an n-element set, and let A be an a-element
set. The LHS is the number of functions from N to A: |F(N, A)| = a™.
Consider such a function f : N — A. Define a set partition 7; of N by
saying that 4,j € N are in the same block of 7 if and only if f(i) =
f(j). There are S(n, k) such set partitions with & blocks, by definition
of the Stirling numbers (of the second kind). Given 7y = {Bjy, ..., By},
we can define a function ¢ : 7y — A by putting ¢g(B;) = f(j) for any
J € B;: from the way 7y is defined, this function g : 7y — A does
not depend on the choices of j € B; made in its definition. Also from
the way that 7 is defined, the function ¢ : 7y — A is an injection.
The injection ¢g : 7y — A is determined by its range R € B(A,k)
and a bijection o : 7 — R from the domain to the range. Thus we
have a construction that starts with f : N — A and produces a triple
(s, R, 0).

Conversely, from a triple (7, S,7) with 7 a set partition of N with
k blocks (for some 0 < k <mn), S C A a subset of A of size k, and 7 :
m — S a bijection, we can construct a function ¢ : N — A by putting
(i) = 7(B) where B is the unique block of 7 that contains i € N.
This defines a bijection between the set of all functions f : N — A
and the set of all triples (7,5, 7) described above. (The set-theoretic
notation for the set of all such triples is a bit cumbersome.)

The number £ of blocks of 7 is in the range 0 < k < n. If 7 has k
blocks then there are S(n,k) choices for 7, (Z) choices for S, and k!
choices for 7. Thus,

o0
a" =

O S(n, k) (Z) K

k

as claimed.

5.1. This is the “g—analogue” of Example 3.3. The bijection at the
heart of the matter is

b
Lla+1,0) = [J(L(a ) x {EN"})

P (;3, EN*~7)
area(P) = area(Q)+ (a+1)(b— 7).
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(The last equation is easily seen by examining Figure 3.2 in the Course
Notes.) It follows that

a+1+b _ area(P)
AR R

PeL(a+1,b)

_ Xb: § @)

J=0 QeL(a,j)
b .
=Ygl { a+j ] .
=0 7 g

That does it!

5.3. Thisis the “g—analogue” of Exercise 3.5. Recall that the solution
to Exercise 3.5 on HW#1 used subsets instead of lattice paths. We’ll
do the same for this question, using the fact that

k(k—i—l) |: :| sum(A)
E q
q

A€eB(n,k)

(Here B(n, k) is the set of all k—element subsets of NV,,.) The bijection
at the heart of the matter is

k
B(m+nk) = |J(B(m,j)x Bnk—j))
A < J(:S’,T)

To go from the LHS to the RHS we start with A € B(m + n, k) and
construct S := AN N,, and

T:={veN,: v+me A}

Conversely, from (S,7) on the RHS we construct A := SU {v+m :
v € T}. These functions are mutually inverse bijections, as one can
check. Keeping track of the sums of the sets in the bijections, we see
that

sum(A) = sum(S) + sum(7T) + m - (#7T).



Now we follow this information through the bijection. ..

n sum
qk(k+1)/2 { . 1 _ Z q (A)
q

AeB(n,k)

_ Z Z Z qsum(S)+sum(T)+m(k—j)

j=0 SeB(m,j) T€B(n,k—3)

k
= g k=D g G+1)/2 { m } gk k=i+1)/2 { kﬁ , }
= J ], J

It remains to clean up the exponents of those extra factors of g. Mul-
tiply both sides by ¢ **+1)/2 The exponent of ¢ in the j-th term on
the RHS is then

m(k =)+ 50 +1)/2+ (k=) (k= j+1)/2 = k(k +1)/2
=7Mk—ﬁ+%[
= mlk =) +* = kj = (m=j)(k=J).

Ak =2k + 7+ k—j—k —k]

Therefore,

as was to be shown.

5.4. Let’s continue from the solution to Exercise 3.6 given above.
There is a bijection

Lh+1,n) = U x {E} x L(b—a,n —j)
(@,

Q)

In this bijection, if P <> (Q,E, Q") and Q € L(a,j), then

P <

area(P) = area(Q) + (a + 1)(n — j) + area(Q’).
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(This is easy to see if you draw a picture.) It follows that

b+1 _ area(P)
e 2
q PeL(b+1,n)

n

_ Z Z qarea(Q)+(a+1)(n—j)+area(R)

7=0 (Q,Q")eL(a,j)xL(b—a,n—j)

- Zn:qmﬂxnj) (Z € L(a, j)qarea(c») S @)
J=0 Q

Q' eL(b—a,n—j)
=3 g { at] } { b—at+n—j }
=0 7o g = q

as was to be proved.

5.7. To prove that

a+b _ area(P)
R
q

PeL(a,b)

we use the bijection £(a,b) = B(a + b,b) of Example 3.1 and the fact
(Theorem 5.5), that

a’ + b sum
qb(b+1)/2 [ ; ] _ Z q (4)
9 AeB(a+bb)

If the lattice path P corresponds to the subset A in this bijection, then
area(P) = #E, = sum(A) —b(b+1)/2,

in which F, is the set defined in Lemma 5.6. To see this, let P =
5152 ...Sq4p in which each step s; is either east E or north N. Then
A ={i € Nyoyp : s; = N}. The area of P is the number of unit
squares which have corners with integer coordinates and lie in the
compact region enclosed by P and the line segments (0,0) — (0,b)
and (0,b) — (a,b). Each such square OJ is directly above a unique E
step of P, say s, = E, and directly to the left of a unique N step of P,
say s, = N. Now this pair (a,z) hasa € Aand z ¢ A and a > z, so
that (a, z) € E4. Conversely, from any pair (a, z) € E4 we can find the
unit square [J in R? that is directly above the step s, = E and directly
left of the step s, = N. Thus, there is a bijection between the pairs
in 4 and the unit squares comprising the area of P. This shows that



area(P) = #E4, and suffices to prove the claim.




