CO 330 Fall 2011 Solutions #3
due Friday, Oct. 21.

Exercises: 6.2, 6.3, 6.6, 6.8, 6.9, 7.2, 7.4, 7.6.

6.2. I will answer questions 6.1 and 6.2 together, as follows. For
every r € N, and PPT (T,®), let ¢,(T) denote the number of nodes
of T that have exactly r children. Exercise 6.1 is the case r = 0, and
Exercise 6.2 is the case r = 1. Consider the recursive structure of the
set U of all PPTs:

U = O(UXUX---XU) [d factors]
d=0
<T7 @) — ((51,1)1>,..., (Sd,'l}d))
n(T) = 1+ n(S;[) + H(Sg) + -+ H(Sd)
CT(T) = X[dzr]+Cr<Sl>+cr(52)+"'+cr(sd>

The equation for n(7T") was discussed in class. The equation for ¢, (7
uses the notation, for a proposition P,
). { | if PisTRUE,
M= 0 if P is FALSE.
As before, on the RHS the first term is the contribution of the root

node ®, and the remaining terms are the contributions of the subtrees
S1 to S4. Considering the two-variable generating function

Upl,y) = Y "y
(T,©)eu

this leads to the functional equation

Urz,y) = D ap=10,(a, )
d=0

= % + (zy — 2)U, (2, y)".
That is,
Ul-U)=x[1+(y— 1)U —U"H).
When r = 0 or r = 1 this is a quadratic equation for U = U,(z,y),

and we know how to solve it. (For r > 2 we will be able to use this
1



2

equation once we establish the Lagrange Implicit Function Theorem.)
For the moment I will deal with the cases » = 0 and r = 1 separately.

6.1 (The case r =0.) We apply the Quadratic Formula:
U-U? = z2+a(y—1)—2(y— 1)U
0 = U~ (zy—2+ 1)U +ay
(zy—z+1) £ /(vy —x +1)2 — day
5 .

When y = 1 this must reduce to the one-variable generating function
U(z) for PPTs derived in class. Therefore

U:

zy—x+1 1
Uo(z,y) = yT - 5\/(@ -z +1)* — dzy.
The sum of ¢y(T') over all 1 (*'~#) PPTs with n nodes is
0
[‘rn] —U0(1'7 y)
dy =0
Thus, we calculate that
GUO T 1 1
— = 2 2.2 1 —4z)"Y2[2(1)z — 4
. > 51— 40) 22(1)2 — 4a]

When n = 1 the average value of ¢y(7T") over all PPTs with one node
is 1/1 = 1. When n > 2 the average value of ¢y(T) over all PPTs

with n nodes is (*"°7) /1 (*"~?) = n/2. (Check this in the case n = 5,

illustrated in Figure 6.3.)

6.2. (The case r = 1.) We apply the Quadratic Formula:
U-U* = z+a(y— 1)U —z(y—1)U?
0 = (~azy+a+ 1)U+ (2y—a—1)U+uz
(—zy+z+1) £ /(oy—x—12—4(—zy+x+ 1)z
2(—zy+2x+1)

1 1 4z
U = —+/1+ ——.
2 2\/+xy—x—1

U =
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When y = 1 this must reduce to the one-variable generating function
U(z) for PPTs derived in class. Therefore

1 1 4x
o1y —
(@, y) 2 2\/ +xy—:p—1

The sum of ¢;(T) over all £ (2n 7) PPTs with n nodes is

0
[2"] 5-U(z,y)
dy =0
Thus, we calculate that
oU 1 1 _
W= 3 2(1—4x> 2 (4n(~1)(1) )
y=0

2n —
B \/1—433 Z(n—2>
When n = 1 the average value of ¢;(T") over all PPTs with one node is
0/1 = 0. When n > 2 the average value of ¢;(T") over all PPTs with n

nodes is
() _ n(n—1)

(=2 2(2n - 3)

n\n—1

(Check this in the case n = b, illustrated in Figure 6.3.)

6.3. For a SDLP P, let p(P) denote the number of peaks of P.

Consider the recursive structure of the set V of all SDLPs:

v = [JNVE)

r=0

P < (NQ.E,NQ.E,...,NQ,E)
n(P) = (n(Qi)+1)+ -+ ((QT)+1)
p(P) = (@) +x[Q1=¢]) +-- (p(Q) +X[Qr = €])

In the last line, € is the empty string (of length 0) and for a proposition
P, x[P] is 1 if P is TRUE and 0 if P is FALSE. For the bivariate generating

function
_ Z 2UP), p(P)

pPev
this leads to the functional equation

o

Viz,y) =) (aV(z,y) —x+zy) =

r=0

1
142 —ay—aV(x,y)
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This gives the quadratic equation
eVi4(zy—2—1)V+1=0

which has as solutions

Clta—ay+/(1+z—ay)? -4z

v 2z

Evaluated at y = 1, we must have V' (z, 1) being the one-variable gen-
erating function V' (z) derived in Chapter 6. Thus,

l+z—ay—/(1+z—ay)?—4da

Now
oV (x,y —r 1 1 _
y=1

Since the number of SDLPs from (0, 0) to (n,n) is 1= (*") for alln € N,

n+l\n
it follows that the average number of peaks in a SDLP from (0,0) to

(n,n) is 0 for n =0, and is

3G n+1

for all n > 1.

6.6. The recursive structure for this set A of PPTs is as follows:

A = {0} x (A" UATUA?)
T < (®,5,.,5;) with de {0,1,2}

d
n(T) = 1—|—Zn(SZ-)
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This leads to the equation A = z(1 + A + A?) for A(z) =Y, 2",
Applying the Quadratic Formula to zA? + (z — 1)A + z = 0 yields
-2+ /(1 —2)?— 422
2z

1_ 2
- 1 14—
2z (1 —x)?

Applying the power series expansion of y/1 — 4t with ¢ = 2%/(1 — z)?

yields
oo 2k+2
1=2 Z : <2k> - 2k+2
~k+1\k (1—ux)

=1 2k 2%
B ;kH(k)(l—x)%H’

where we have had to take the minus sign in the &+ to get a power series
with nonnegative integer coefficients for A(x). Continuing,

Alx) =

11—z

Alx) = i (1 +

X

N1 2K o= 2k 4+ 5\ opiie
A — +1+4j
(z) k+1(k)z< 2%k >x
k=0 7=0
B i i “”im 1 (2k\ (2K + (n—1— 2Kk)
& —~ k+1\k 2k '

Thus, for each n > 1, the number of PPTs with n nodes in A is

(=v/2 o\ _L(n—zl)m (n—1)!
E+1\ k 2k ) &= (k+D)E(n—1-2k)0

as claimed.

6.8. By hand, one can check that 73 =1, 74, = 2, 75 = 5, and 75 = 14.
One then conjectures that the answer is the Catalan number 7, =
ﬁ(?:;) for all n > 3. There are then two reasonable strategies for
proving this formula — by generating functions or by finding a bijection.
I'll do both.
I. Generating functions

To describe the recursive structure of the set of all triangulations, con-
sider a triangulation A of an n-gon, with n > 3. The edge marked
with an arrow (“root edge”) is on exactly one triangle of A. Delete

the root edge, and mark the other two edges of its triangle to give a
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directed path of length two from the tail of the root edge to the head
of the root edge. The result is an ordered pair (A, P) of triangulations:
A is a triangulation of the j-gon containing the tail of the root edge
of A, and P is a triangulation of the k-gon containing the head of the
root edge of A. We have to admit the degenerate case that j = 2 or
k =2, so let us put 75 = 1. (Luckily, this fits our conjecture as well!)
Note that in this decomposition the sizes of the polygons are related by
7+ k=mn-+1. The converse construction is apparent: for any ordered
pair (A, P) of triangulations with A triangulating a j-gon (j > 2) and P
triangulating a k-gon (k > 2), we can stitch them together with a new
root edge to obtain a triangulation of an n-gon, where n = j + k — 1.
(Note that if n and j are given, then k = n 4+ 1 — j.) Thus, we have
established a bijection which shows that for all n > 3,

n—1
Th — E Tan-i-l—j'
Jj=2

Together with the base case 7, = 1 this determines the sequence (7, :
n > 2). You can check that it agrees with the data for n up to 6.
To solve this recurrence, consider the generating function

T(x) = i T = Z &),
n=2 A

(In the second summation, A ranges over all triangulations of all poly-
gons, and A triangulates an n(A)-gon.) We calculate that

[e.9]
T(z) = E Tpx"
n=2
00 n—1
= Tox" + TiTn+1—j "
n=3 \j=2
o0 o0
= x2—|—§ Tjg Ty, 2 TR
k=2

=2
= 22+ T(z)?*/x.

That is, the generating function T'(z) satisfies the functional equation
T?/x — T + z* = 0, which we solve by the Quadratic Formula and the



Binomial Series expansion, to yield

T(x) = 2/x

r x > 1/2h —2

= S+ (1-2) = h
2 2( ;h<h—1)x>

_ S22y

N h\h—1
h=1

B i": 1 [2n—4 o

- n:2n—1 n—2

(In the penultimate equality we use the fact that the coefficients are
nonnegative to determine the choice of the + sign.) That’s it!

II. Bijection
Here is a bijection between the set of all triangulations and the set of all
binary rooted trees. In this bijection, if a triangulation A corresponds
to a BRT T, then n(A) = n(T) + 2. Since we have enumerated BRTs,
this shows that there are ﬁ (27?:24) triangulations of an n-gon, for each
n > 3.

To define the bijection, start with a triangulation A. Put a node in
the middle of each triangle — the node in the triangle containing the
root edge of A will be the root node of T'. Draw edges between nodes
of T across the edges of A. Each node has at most two children, since
it sits in a triangle of A and (except for the root node) one of its neigh-
bours is its parent. Each child w of each node v is labelled left or right
according to which edge of the triangle containing v is crossed when
going from v to w: one enters the triangle containing v coming from its
parent (or the root edge, in case v is the root node) and then crosses
either the left or the right edge of the triangle to get to w. Thus, T
is a BRT. The number of nodes of T" is the number of triangles of A,
which is n(A) — 2. (The converse construction of A given 7" is left to
you to explain.)

6.9. For each n > 1, let Y,, be the set of 2-by-n Standard Young
tableaux, and let V,, be the set of SDLPs from (0,0) to (n,n). By
Theorem 6.9, #V, = — (2") To answer the question it suffices to

nt+1\n
find a bijection Y,, = V,,.



Let A = (a;;) be a 2-by-n SYT. Define a sequence P = $15s...5, as
follows: each s; € {N,E}, and
o { N if ¢ is in row one of A,

E if 7 is in row two of A.

The left-to-right and top-to-bottom increasing condition in the defini-
tion of SYT shows that for each 1 < k < 2n, there are at least as
many Ns as there are Es in the subsequence s;...s;. By Lemma 6.11
and Example 6.12, it follows that P is a SDLP.

Conversely, given a SDLP P = s;...59, construct a 2-by-n SYT as
follows. Start with an empty 2-by-n array A of cells. As k goes from
1 to 2n (increasing by 1 each step), put the number & in the leftmost
empty cell in the first row of A if s; = N, or in the leftmost empty cell
in the second row of A if s; = E. From Example 6.12 and Lemma 6.11
it is not too hard to see that the increasing conditions defining a SYT
are satisfied by the result.

One sees after a while that composing these constructions in either
order yields the identity functions Y,, — Y,, and V,, — V,,. There-
fore, these constructions are mutually inverse bijections, completing
the proof.

7.2. (a) Assume that R is an integral domain. Suppose that R[z] is
not an integral domain, and let p(z) = Y77 a;a’ and g(x) = Y77 bja!
be nonzero polynomials in R[x] such that p(z)g(z) = 0. We may
assume that p has degree n and ¢ has degree m, so that a, # 0 and
b, # 0 are nonzero elements of R. Taking the coefficient of z"™™ on
both sides of the equation p(z)g(xz) = 0, we see that a,b,, = 0. This
shows that R contains zero-divisors, contradicting the assumption that
R is an integral domain.

(b) Note that 1/x is in R(z) but not in R[[z]], as is clearly seen.
Also, (1 —4a)™42 =35> (*")2™ is in R[[z]] but not in R(z). To see
this, if it were a rational function then (1 — 42)~'/? = p(x)/q(z) for
two polynomials, with g(z) # 0. But then ¢(z)* = (1 — 4z)p(x)?. The
LHS is a polynomial of even degree, while the RHS is a polynomial of
odd degree. This contradiction shows that (1 —4x)~/2 is not in R(z).
(c) Assume that R is a field, and let p(x)/q(z) be a quotient of
polynomials, with ¢(x) # 0. If k is the smallest power of x that occurs
with nonzero coefficient in () then we can write q(z) = cpa® f(z) for
some polynomial f(x) with constant term equal to one, and ¢, # 0. By
Proposition 7.5, f(z) is invertible in R|[[z]], which is a subset of R((z)),



and it follows that ¢(z)~! = ¢, 'z~ ¥ f(x)~! in R((z)). Thus,

is a formal Laurent series in R((z)). Thus, R(z) is a subset of R((z)).
(d) Note that 1/2 is in Z(x) but not in Z((x)). (From part (b) it
follows that Z(x) is contained in Q((x)).)

(e) The ring R[[z]][y] consists of polynomials in y whose coefficients
are power series in R[[z]]: that is, something of the form Y 7 a;(x)y".
The ring R[y|[[z]] consists of power series in x whose coefficients are
polynomials in R[y]: that is, something of the form 377 ) b;(y)a?. Writ-
ing an element of the form Y, a;(z)y" in terms of powers of x, we see
that it has the form > b;(y)2’ and is such that deg(b;) < n for all
j € N. Thus R[[z]][y] is contained in R[y|[[z]]. The element

is an element of R[y|[[z]] that is not contained in R[[z]][y].

7.4. To begin with, the product rule is straightforward for powers of
x: for any integers m,n € Z:

dx
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Now, since d/dz is a linear operator, it follows that for any two formal
Laurent series f(z) = Efno—[(f) ama™ and g(z) =377 ) baz™ we have

L@y = Z > ™

) n=I(g)

= Z ma,z™ Z b,z | + Z amx™ Z nb,x
m=I(f) n=I(g) m=I(f)
d
= |\ 2 f@) ) g(x) + f(2) | ——g(z)
d d
That’s it!
7.6.  The sequence of formal power series is defined by fo(z) := 1,

fi(z) =1, and fip1(x) == fr(z) + 2% fr_1(z) for all k& > 1. This se-
quence of formal power series converges. (Writing out the first few,
up to fr(x), say, is a good example.) To check the definition of con-
vergence, consider the sequence of coefficients of ™ | for any n € N.
We must show that this sequence of coefficients is eventually constant.
That is, we must show that there is an index K,, and a value A,, such
that for all k > K,,, [2"]| fx(z) = A,. Now, from the defining recurrence,
note that if £ > n 4+ 1 then

[2"] fesi(2) = [2"] ful2) + [2"]2" fimr(2) = [2"] fu(2).
Thus, for all £ > n + 1 it follows by induction on £ that

[ fi(2) = [&"] frga (2)-

This verifies the definition of convergence, but the identity of the lim-
iting series f(z) = limy_o fr(x) remains mysterious.




