
CO 330 Fall 2011 Solutions #3
due Friday, Oct. 21.

Exercises: 6.2, 6.3, 6.6, 6.8, 6.9, 7.2, 7.4, 7.6.

6.2. I will answer questions 6.1 and 6.2 together, as follows. For
every r ∈ N, and PPT (T,�), let cr(T ) denote the number of nodes
of T that have exactly r children. Exercise 6.1 is the case r = 0, and
Exercise 6.2 is the case r = 1. Consider the recursive structure of the
set U of all PPTs:

U 

∞⋃
d=0

(U× U× · · · × U) [d factors]

(T,�) ↔ ((S1, v1), ..., (Sd, vd))

n(T ) = 1 + n(S1) + n(S2) + · · ·+ n(Sd)

cr(T ) = χ[d = r] + cr(S1) + cr(S2) + · · ·+ cr(Sd)

The equation for n(T ) was discussed in class. The equation for cr(T )
uses the notation, for a proposition P,

χ[P] :=

{
1 if P is TRUE,
0 if P is FALSE.

As before, on the RHS the first term is the contribution of the root
node �, and the remaining terms are the contributions of the subtrees
S1 to Sd. Considering the two-variable generating function

Ur(x, y) :=
∑

(T,�)∈U

xn(T )ycr(T )

this leads to the functional equation

Ur(x, y) =
∞∑
d=0

xyχ[d=r]Ur(x, y)d

=
x

1− Ur(x, y)
+ (xy − x)Ur(x, y)r.

That is,

U(1− U) = x[1 + (y − 1)(U r − U r+1)].

When r = 0 or r = 1 this is a quadratic equation for U = Ur(x, y),
and we know how to solve it. (For r ≥ 2 we will be able to use this
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equation once we establish the Lagrange Implicit Function Theorem.)
For the moment I will deal with the cases r = 0 and r = 1 separately.

6.1 (The case r = 0.) We apply the Quadratic Formula:

U − U2 = x+ x(y − 1)− x(y − 1)U

0 = U2 − (xy − x+ 1)U + xy

U =
(xy − x+ 1)±

√
(xy − x+ 1)2 − 4xy

2
.

When y = 1 this must reduce to the one-variable generating function
U(x) for PPTs derived in class. Therefore

U0(x, y) =
xy − x+ 1

2
− 1

2

√
(xy − x+ 1)2 − 4xy.

The sum of c0(T ) over all 1
n

(
2n−2
n−1

)
PPTs with n nodes is

[xn]
∂

∂y
U0(x, y)

∣∣∣∣
y=0

.

Thus, we calculate that

∂U0

∂y

∣∣∣∣
y=0

=
x

2
− 1

2
· 1

2
(1− 4x)−1/2[2(1)x− 4x]

=
x

2

(
1 +

1√
1− 4x

)
= x+

1

2

∞∑
n=2

(
2n− 2

n− 1

)
xn.

When n = 1 the average value of c0(T ) over all PPTs with one node
is 1/1 = 1. When n ≥ 2 the average value of c0(T ) over all PPTs
with n nodes is 1

2

(
2n−2
n−1

)
/ 1
n

(
2n−2
n−1

)
= n/2. (Check this in the case n = 5,

illustrated in Figure 6.3.)

6.2. (The case r = 1.) We apply the Quadratic Formula:

U − U2 = x+ x(y − 1)U − x(y − 1)U2

0 = (−xy + x+ 1)U2 + (xy − x− 1)U + x

U =
(−xy + x+ 1)±

√
(xy − x− 1)2 − 4(−xy + x+ 1)x

2(−xy + x+ 1)

U =
1

2
± 1

2

√
1 +

4x

xy − x− 1
.
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When y = 1 this must reduce to the one-variable generating function
U(x) for PPTs derived in class. Therefore

U1(x, y) =
1

2
− 1

2

√
1 +

4x

xy − x− 1
.

The sum of c1(T ) over all 1
n

(
2n−2
n−1

)
PPTs with n nodes is

[xn]
∂

∂y
U1(x, y)

∣∣∣∣
y=0

.

Thus, we calculate that

∂U1

∂y

∣∣∣∣
y=0

= −1

2
· 1

2
(1− 4x)−1/2(4x(−1)(−1)−2x)

=
x2

√
1− 4x

=
∞∑
n=2

(
2n− 4

n− 2

)
xn.

When n = 1 the average value of c1(T ) over all PPTs with one node is
0/1 = 0. When n ≥ 2 the average value of c1(T ) over all PPTs with n
nodes is (

2n−4
n−2

)
1
n

(
2n−2
n−1

) =
n(n− 1)

2(2n− 3)
.

(Check this in the case n = 5, illustrated in Figure 6.3.)

6.3. For a SDLP P , let p(P ) denote the number of peaks of P .
Consider the recursive structure of the set V of all SDLPs:

V 

∞⋃
r=0

(NVE)r

P ↔ (NQ1E,NQ2E, . . . ,NQrE)

n(P ) = (n(Q1) + 1) + · · ·+ (n(Qr) + 1)

p(P ) = (p(Q1) + χ[Q1 = ε]) + · · · (p(Qr) + χ[Qr = ε])

In the last line, ε is the empty string (of length 0) and for a proposition
P, χ[P] is 1 if P is TRUE and 0 if P is FALSE. For the bivariate generating
function

V (x, y) :=
∑
P∈V

xn(P )yp(P )

this leads to the functional equation

V (x, y) =
∞∑
r=0

(xV (x, y)− x+ xy)r =
1

1 + x− xy − xV (x, y)
.
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This gives the quadratic equation

xV 2 + (xy − x− 1)V + 1 = 0

which has as solutions

V =
1 + x− xy ±

√
(1 + x− xy)2 − 4x

2x
.

Evaluated at y = 1, we must have V (x, 1) being the one-variable gen-
erating function V (x) derived in Chapter 6. Thus,

V (x, y) =
1 + x− xy −

√
(1 + x− xy)2 − 4x

2x
.

Now

∂V (x, y)

∂y

∣∣∣∣
y=1

=
−x
2x
− 1

2x
· 1

2
(1− 4x)−1/2(2(1 + x− x)1(−x)

=
−1

2
+

1

2

1√
1− 4x

=
∞∑
n=1

1

2

(
2n

n

)
xn.

Since the number of SDLPs from (0, 0) to (n, n) is 1
n+1

(
2n
n

)
for all n ∈ N,

it follows that the average number of peaks in a SDLP from (0, 0) to
(n, n) is 0 for n = 0, and is

1
2

(
2n
n

)
1

n+1

(
2n
n

) =
n+ 1

2

for all n ≥ 1.

6.6. The recursive structure for this set A of PPTs is as follows:

A 
 {�} × (A0 ∪A1 ∪A2)

T ↔ (�, S1, .., Sd) with d ∈ {0, 1, 2}

n(T ) = 1 +
d∑
i=1

n(Si)
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This leads to the equation A = x(1 +A+A2) for A(x) =
∑

T∈A x
n(T ).

Applying the Quadratic Formula to xA2 + (x− 1)A+ x = 0 yields

A(x) =
1− x±

√
(1− x)2 − 4x2

2x

=
1− x

2x

(
1±

√
1− 4

x2

(1− x)2

)
Applying the power series expansion of

√
1− 4t with t = x2/(1 − x)2

yields

A(x) =
1− x

2x

(
1±

[
1− 2

∞∑
k=0

1

k + 1

(
2k

k

)
x2k+2

(1− x)2k+2

])

=
∞∑
k=0

1

k + 1

(
2k

k

)
x2k+1

(1− x)2k+1
,

where we have had to take the minus sign in the ± to get a power series
with nonnegative integer coefficients for A(x). Continuing,

A(x) =
∞∑
k=0

1

k + 1

(
2k

k

) ∞∑
j=0

(
2k + j

2k

)
x2k+1+j

=
∞∑
n=1

xn

b(n−1)/2c∑
k=0

1

k + 1

(
2k

k

)(
2k + (n− 1− 2k)

2k

)
.


Thus, for each n ≥ 1, the number of PPTs with n nodes in A is

b(n−1)/2c∑
k=0

1

k + 1

(
2k

k

)(
n− 1

2k

)
=

b(n−1)/2c∑
k=0

(n− 1)!

(k + 1)!k!(n− 1− 2k)!
,

as claimed.

6.8. By hand, one can check that τ3 = 1, τ4 = 2, τ5 = 5, and τ6 = 14.
One then conjectures that the answer is the Catalan number τn =

1
n−1

(
2n−4
n−2

)
for all n ≥ 3. There are then two reasonable strategies for

proving this formula – by generating functions or by finding a bijection.
I’ll do both.

I. Generating functions
To describe the recursive structure of the set of all triangulations, con-
sider a triangulation ∆ of an n-gon, with n ≥ 3. The edge marked
with an arrow (“root edge”) is on exactly one triangle of ∆. Delete
the root edge, and mark the other two edges of its triangle to give a
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directed path of length two from the tail of the root edge to the head
of the root edge. The result is an ordered pair (Λ,P) of triangulations:
Λ is a triangulation of the j-gon containing the tail of the root edge
of ∆, and P is a triangulation of the k-gon containing the head of the
root edge of ∆. We have to admit the degenerate case that j = 2 or
k = 2, so let us put τ2 = 1. (Luckily, this fits our conjecture as well!)
Note that in this decomposition the sizes of the polygons are related by
j + k = n+ 1. The converse construction is apparent: for any ordered
pair (Λ,P) of triangulations with Λ triangulating a j-gon (j ≥ 2) and P

triangulating a k-gon (k ≥ 2), we can stitch them together with a new
root edge to obtain a triangulation of an n-gon, where n = j + k − 1.
(Note that if n and j are given, then k = n + 1 − j.) Thus, we have
established a bijection which shows that for all n ≥ 3,

τn =
n−1∑
j=2

τjτn+1−j.

Together with the base case τ2 = 1 this determines the sequence (τn :
n ≥ 2). You can check that it agrees with the data for n up to 6.

To solve this recurrence, consider the generating function

T (x) =
∞∑
n=2

τnx
n =

∑
∆

xn(∆).

(In the second summation, ∆ ranges over all triangulations of all poly-
gons, and ∆ triangulates an n(∆)-gon.) We calculate that

T (x) =
∞∑
n=2

τnx
n

= τ2x
2 +

∞∑
n=3

(
n−1∑
j=2

τjτn+1−j

)
xn

= x2 +
∞∑
j=2

τj

∞∑
k=2

τk x
j+k−1

= x2 + T (x)2/x.

That is, the generating function T (x) satisfies the functional equation
T 2/x− T + x2 = 0, which we solve by the Quadratic Formula and the
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Binomial Series expansion, to yield

T (x) =
1±
√

1− 4x

2/x

=
x

2
± x

2

(
1− 2

∞∑
h=1

1

h

(
2h− 2

h− 1

)
xh

)

=
∞∑
h=1

1

h

(
2h− 2

h− 1

)
xh+1

=
∞∑
n=2

1

n− 1

(
2n− 4

n− 2

)
xn.

(In the penultimate equality we use the fact that the coefficients are
nonnegative to determine the choice of the ± sign.) That’s it!

II. Bijection
Here is a bijection between the set of all triangulations and the set of all
binary rooted trees. In this bijection, if a triangulation ∆ corresponds
to a BRT T , then n(∆) = n(T ) + 2. Since we have enumerated BRTs,
this shows that there are 1

n−1

(
2n−4
n−2

)
triangulations of an n-gon, for each

n ≥ 3.
To define the bijection, start with a triangulation ∆. Put a node in

the middle of each triangle – the node in the triangle containing the
root edge of ∆ will be the root node of T . Draw edges between nodes
of T across the edges of ∆. Each node has at most two children, since
it sits in a triangle of ∆ and (except for the root node) one of its neigh-
bours is its parent. Each child w of each node v is labelled left or right
according to which edge of the triangle containing v is crossed when
going from v to w: one enters the triangle containing v coming from its
parent (or the root edge, in case v is the root node) and then crosses
either the left or the right edge of the triangle to get to w. Thus, T
is a BRT. The number of nodes of T is the number of triangles of ∆,
which is n(∆) − 2. (The converse construction of ∆ given T is left to
you to explain.)

6.9. For each n ≥ 1, let Yn be the set of 2-by-n Standard Young
tableaux, and let Vn be the set of SDLPs from (0, 0) to (n, n). By
Theorem 6.9, #Vn = 1

n+1

(
2n
n

)
. To answer the question it suffices to

find a bijection Yn 
 Vn.



8

Let A = (aij) be a 2-by-n SYT. Define a sequence P = s1s2...s2n as
follows: each si ∈ {N,E}, and

si :=

{
N if i is in row one of A,
E if i is in row two of A.

The left-to-right and top-to-bottom increasing condition in the defini-
tion of SYT shows that for each 1 ≤ k ≤ 2n, there are at least as
many Ns as there are Es in the subsequence s1...sk. By Lemma 6.11
and Example 6.12, it follows that P is a SDLP.

Conversely, given a SDLP P = s1...s2n construct a 2-by-n SYT as
follows. Start with an empty 2-by-n array A of cells. As k goes from
1 to 2n (increasing by 1 each step), put the number k in the leftmost
empty cell in the first row of A if si = N, or in the leftmost empty cell
in the second row of A if si = E. From Example 6.12 and Lemma 6.11
it is not too hard to see that the increasing conditions defining a SYT
are satisfied by the result.

One sees after a while that composing these constructions in either
order yields the identity functions Yn → Yn and Vn → Vn. There-
fore, these constructions are mutually inverse bijections, completing
the proof.

7.2. (a) Assume that R is an integral domain. Suppose that R[x] is
not an integral domain, and let p(x) =

∑n
i=0 aix

i and q(x) =
∑m

j=0 bjx
j

be nonzero polynomials in R[x] such that p(x)q(x) = 0. We may
assume that p has degree n and q has degree m, so that an 6= 0 and
bm 6= 0 are nonzero elements of R. Taking the coefficient of xn+m on
both sides of the equation p(x)q(x) = 0, we see that anbm = 0. This
shows that R contains zero-divisors, contradicting the assumption that
R is an integral domain.
(b) Note that 1/x is in R(x) but not in R[[x]], as is clearly seen.
Also, (1 − 4x)−1/2 =

∑∞
n=0

(
2n
n

)
xn is in R[[x]] but not in R(x). To see

this, if it were a rational function then (1 − 4x)−1/2 = p(x)/q(x) for
two polynomials, with q(x) 6= 0. But then q(x)2 = (1− 4x)p(x)2. The
LHS is a polynomial of even degree, while the RHS is a polynomial of
odd degree. This contradiction shows that (1− 4x)−1/2 is not in R(x).
(c) Assume that R is a field, and let p(x)/q(x) be a quotient of
polynomials, with q(x) 6= 0. If k is the smallest power of x that occurs
with nonzero coefficient in q(x) then we can write q(x) = ckx

kf(x) for
some polynomial f(x) with constant term equal to one, and ck 6= 0. By
Proposition 7.5, f(x) is invertible in R[[x]], which is a subset of R((x)),
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and it follows that q(x)−1 = c−1
k x−kf(x)−1 in R((x)). Thus,

p(x)

q(x)
= p(x)q(x)−1 = p(x)c−1

k x−kf−1(x)

is a formal Laurent series in R((x)). Thus, R(x) is a subset of R((x)).
(d) Note that 1/2 is in Z(x) but not in Z((x)). (From part (b) it
follows that Z(x) is contained in Q((x)).)
(e) The ring R[[x]][y] consists of polynomials in y whose coefficients
are power series in R[[x]]: that is, something of the form

∑n
i=0 ai(x)yi.

The ring R[y][[x]] consists of power series in x whose coefficients are
polynomials in R[y]: that is, something of the form

∑∞
j=0 bj(y)xj. Writ-

ing an element of the form
∑n

i=0 ai(x)yi in terms of powers of x, we see
that it has the form

∑∞
j=0 bj(y)xj and is such that deg(bj) ≤ n for all

j ∈ N. Thus R[[x]][y] is contained in R[y][[x]]. The element

1

1− (y + 1)x
=
∞∑
j=0

(1 + y)jxj

is an element of R[y][[x]] that is not contained in R[[x]][y].

7.4. To begin with, the product rule is straightforward for powers of
x: for any integers m,n ∈ Z:

d

dx
(xm · xn) = (m+ n)xm+n−1

= (mxm−1)xn + xm(nxn−1)

=

(
d

dx
xm
)
xn + xm

(
d

dx
xn
)
.
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Now, since d/dx is a linear operator, it follows that for any two formal
Laurent series f(x) =

∑∞
m=I(f) amx

m and g(x) =
∑∞

n=I(g) bnx
n we have

d

dx
(f(x)g(x)) =

d

dx

∞∑
m=I(f)

∞∑
n=I(g)

ambnx
m+n

=
∞∑

m=I(f)

∞∑
n=I(g)

ambn
[
(mxm−1)xn + xm(nxn−1)

]

=

 ∞∑
m=I(f)

mamx
m−1

∞∑
n=I(g)

bnx
n

+

 ∞∑
m=I(f)

amx
m

∞∑
n=I(g)

nbnx
n−1


=

(
d

dx
f(x)

)
g(x) + f(x)

(
d

dx
g(x)

)
.

That’s it!

7.6. The sequence of formal power series is defined by f0(x) := 1,
f1(x) := 1, and fk+1(x) := fk(x) + xkfk−1(x) for all k ≥ 1. This se-
quence of formal power series converges. (Writing out the first few,
up to f7(x), say, is a good example.) To check the definition of con-
vergence, consider the sequence of coefficients of xn , for any n ∈ N.
We must show that this sequence of coefficients is eventually constant.
That is, we must show that there is an index Kn and a value An such
that for all k ≥ Kn, [xn]fk(x) = An. Now, from the defining recurrence,
note that if k ≥ n+ 1 then

[xn]fk+1(x) = [xn]fk(x) + [xn]xkfk−1(x) = [xn]fk(x).

Thus, for all k ≥ n+ 1 it follows by induction on k that

[xn]fk(x) = [xn]fn+1(x).

This verifies the definition of convergence, but the identity of the lim-
iting series f(x) = limk→∞ fk(x) remains mysterious.


