CO 330 Fall 2011 Solutions $#3$ due Friday, Oct. 21.

Exercises: 6.2, 6.3, 6.6, 6.8, 6.9, 7.2, 7.4, 7.6.

6.2. I will answer questions 6.1 and 6.2 together, as follows. For every $r \in \mathbb{N}$, and PPT (T, \odot) , let $c_r(T)$ denote the number of nodes of T that have exactly r children. Exercise 6.1 is the case $r = 0$, and Exercise 6.2 is the case $r = 1$. Consider the recursive structure of the set U of all PPTs:

$$
\mathcal{U} \implies \bigcup_{d=0}^{\infty} (\mathcal{U} \times \mathcal{U} \times \dots \times \mathcal{U}) \quad [d \text{ factors}]
$$
\n
$$
(T, \odot) \leftrightarrow ((S_1, v_1), \dots, (S_d, v_d))
$$
\n
$$
n(T) = 1 + n(S_1) + n(S_2) + \dots + n(S_d)
$$
\n
$$
c_r(T) = \chi[d = r] + c_r(S_1) + c_r(S_2) + \dots + c_r(S_d)
$$

The equation for $n(T)$ was discussed in class. The equation for $c_r(T)$ uses the notation, for a proposition P,

$$
\chi[P] := \left\{ \begin{array}{ll} 1 & \text{if } P \text{ is TRUE,} \\ 0 & \text{if } P \text{ is FALSE.} \end{array} \right.
$$

As before, on the RHS the first term is the contribution of the root node \odot , and the remaining terms are the contributions of the subtrees S_1 to S_d . Considering the two-variable generating function

$$
U_r(x,y) := \sum_{(T,\odot)\in\mathfrak{U}} x^{n(T)} y^{c_r(T)}
$$

this leads to the functional equation

$$
U_r(x, y) = \sum_{d=0}^{\infty} xy^{\chi[d=r]} U_r(x, y)^d
$$

=
$$
\frac{x}{1 - U_r(x, y)} + (xy - x)U_r(x, y)^r.
$$

That is,

$$
U(1-U) = x[1 + (y-1)(U^r - U^{r+1})].
$$

When $r = 0$ or $r = 1$ this is a quadratic equation for $U = U_r(x, y)$, and we know how to solve it. (For $r \geq 2$ we will be able to use this equation once we establish the Lagrange Implicit Function Theorem.) For the moment I will deal with the cases $r = 0$ and $r = 1$ separately.

6.1 (The case $r = 0$.) We apply the Quadratic Formula:

$$
U - U2 = x + x(y - 1) - x(y - 1)U
$$

\n
$$
0 = U2 - (xy - x + 1)U + xy
$$

\n
$$
U = \frac{(xy - x + 1) \pm \sqrt{(xy - x + 1)^{2} - 4xy}}{2}
$$

.

When $y = 1$ this must reduce to the one-variable generating function $U(x)$ for PPTs derived in class. Therefore

$$
U_0(x,y) = \frac{xy - x + 1}{2} - \frac{1}{2}\sqrt{(xy - x + 1)^2 - 4xy}.
$$

The sum of $c_0(T)$ over all $\frac{1}{n} {2n-2 \choose n-1}$ $_{n-1}^{2n-2}$) PPTs with *n* nodes is

$$
[x^n] \left. \frac{\partial}{\partial y} U_0(x, y) \right|_{y=0}
$$

.

Thus, we calculate that

$$
\left. \frac{\partial U_0}{\partial y} \right|_{y=0} = \frac{x}{2} - \frac{1}{2} \cdot \frac{1}{2} (1 - 4x)^{-1/2} [2(1)x - 4x]
$$

$$
= \frac{x}{2} \left(1 + \frac{1}{\sqrt{1 - 4x}} \right)
$$

$$
= x + \frac{1}{2} \sum_{n=2}^{\infty} {2n - 2 \choose n - 1} x^n.
$$

When $n = 1$ the average value of $c_0(T)$ over all PPTs with one node is $1/1 = 1$. When $n \geq 2$ the average value of $c_0(T)$ over all PPTs with *n* nodes is $\frac{1}{2} \binom{2n-2}{n-1}$ $\binom{2n-2}{n-1}$ / $\frac{1}{n}$ $\frac{1}{n} \binom{2n-2}{n-1}$ $\binom{2n-2}{n-1} = n/2$. (Check this in the case $n = 5$, illustrated in Figure 6.3.)

6.2. (The case $r = 1$.) We apply the Quadratic Formula:

$$
U - U2 = x + x(y - 1)U - x(y - 1)U2
$$

\n
$$
0 = (-xy + x + 1)U2 + (xy - x - 1)U + x
$$

\n
$$
U = \frac{(-xy + x + 1) \pm \sqrt{(xy - x - 1)^{2} - 4(-xy + x + 1)x}}{2(-xy + x + 1)}
$$

\n
$$
U = \frac{1}{2} \pm \frac{1}{2} \sqrt{1 + \frac{4x}{xy - x - 1}}.
$$

When $y = 1$ this must reduce to the one-variable generating function $U(x)$ for PPTs derived in class. Therefore

$$
U_1(x,y) = \frac{1}{2} - \frac{1}{2}\sqrt{1 + \frac{4x}{xy - x - 1}}.
$$

The sum of $c_1(T)$ over all $\frac{1}{n} {2n-2 \choose n-1}$ $_{n-1}^{2n-2}$) PPTs with *n* nodes is

$$
[x^n] \left. \frac{\partial}{\partial y} U_1(x, y) \right|_{y=0}.
$$

Thus, we calculate that

$$
\left. \frac{\partial U_1}{\partial y} \right|_{y=0} = -\frac{1}{2} \cdot \frac{1}{2} (1 - 4x)^{-1/2} (4x(-1)(-1)^{-2}x)
$$

$$
= \frac{x^2}{\sqrt{1 - 4x}} = \sum_{n=2}^{\infty} {2n - 4 \choose n - 2} x^n.
$$

When $n = 1$ the average value of $c_1(T)$ over all PPTs with one node is $0/1 = 0$. When $n \geq 2$ the average value of $c_1(T)$ over all PPTs with n nodes is

$$
\frac{\binom{2n-4}{n-2}}{\frac{1}{n}\binom{2n-2}{n-1}} = \frac{n(n-1)}{2(2n-3)}.
$$

(Check this in the case $n = 5$, illustrated in Figure 6.3.)

6.3. For a SDLP P, let $p(P)$ denote the number of peaks of P. Consider the recursive structure of the set $\mathcal V$ of all SDLPs:

$$
\mathcal{V} \Rightarrow \bigcup_{r=0}^{\infty} (\mathsf{NVE})^r
$$

\n
$$
P \leftrightarrow (\mathsf{N}Q_1\mathsf{E}, \mathsf{N}Q_2\mathsf{E}, \dots, \mathsf{N}Q_r\mathsf{E})
$$

\n
$$
n(P) = (n(Q_1) + 1) + \dots + (n(Q_r) + 1)
$$

\n
$$
p(P) = (p(Q_1) + \chi[Q_1 = \varepsilon]) + \dots + (p(Q_r) + \chi[Q_r = \varepsilon])
$$

In the last line, ε is the empty string (of length 0) and for a proposition P, χ [P] is 1 if P is TRUE and 0 if P is FALSE. For the bivariate generating function

$$
V(x,y):=\sum_{P\in \mathcal{V}}x^{n(P)}y^{p(P)}
$$

this leads to the functional equation

$$
V(x,y) = \sum_{r=0}^{\infty} (xV(x,y) - x + xy)^r = \frac{1}{1 + x - xy - xV(x,y)}.
$$

This gives the quadratic equation

$$
xV^2 + (xy - x - 1)V + 1 = 0
$$

which has as solutions

$$
V = \frac{1 + x - xy \pm \sqrt{(1 + x - xy)^2 - 4x}}{2x}.
$$

Evaluated at $y = 1$, we must have $V(x, 1)$ being the one-variable generating function $V(x)$ derived in Chapter 6. Thus,

$$
V(x,y) = \frac{1+x-xy-\sqrt{(1+x-xy)^2-4x}}{2x}.
$$

Now

$$
\frac{\partial V(x,y)}{\partial y}\Big|_{y=1} = \frac{-x}{2x} - \frac{1}{2x} \cdot \frac{1}{2} (1 - 4x)^{-1/2} (2(1 + x - x)^1(-x))
$$

$$
= \frac{-1}{2} + \frac{1}{2} \frac{1}{\sqrt{1 - 4x}}
$$

$$
= \sum_{n=1}^{\infty} \frac{1}{2} {2n \choose n} x^n.
$$

Since the number of SDLPs from $(0,0)$ to (n,n) is $\frac{1}{n+1} {2n \choose n}$ $\binom{2n}{n}$ for all $n \in \mathbb{N}$, it follows that the average number of peaks in a SDLP from (0, 0) to (n, n) is 0 for $n = 0$, and is

$$
\frac{\frac{1}{2}\binom{2n}{n}}{\frac{1}{n+1}\binom{2n}{n}} = \frac{n+1}{2}
$$

for all $n \geq 1$.

6.6. The recursive structure for this set A of PPTs is as follows:

$$
\mathcal{A} \implies \{\odot\} \times (\mathcal{A}^0 \cup \mathcal{A}^1 \cup \mathcal{A}^2)
$$

\n
$$
T \leftrightarrow (\odot, S_1, ..., S_d) \text{ with } d \in \{0, 1, 2\}
$$

\n
$$
n(T) = 1 + \sum_{i=1}^d n(S_i)
$$

This leads to the equation $A = x(1 + A + A^2)$ for $A(x) = \sum_{T \in A} x^{n(T)}$. Applying the Quadratic Formula to $xA^2 + (x-1)A + x = 0$ yields

$$
A(x) = \frac{1 - x \pm \sqrt{(1 - x)^2 - 4x^2}}{2x}
$$

$$
= \frac{1 - x}{2x} \left(1 \pm \sqrt{1 - 4\frac{x^2}{(1 - x)^2}}\right)
$$

Applying the power series expansion of $\sqrt{1-4t}$ with $t = x^2/(1-x)^2$ yields

$$
A(x) = \frac{1-x}{2x} \left(1 \pm \left[1 - 2 \sum_{k=0}^{\infty} \frac{1}{k+1} {2k \choose k} \frac{x^{2k+2}}{(1-x)^{2k+2}} \right] \right)
$$

=
$$
\sum_{k=0}^{\infty} \frac{1}{k+1} {2k \choose k} \frac{x^{2k+1}}{(1-x)^{2k+1}},
$$

where we have had to take the minus sign in the \pm to get a power series with nonnegative integer coefficients for $A(x)$. Continuing,

$$
A(x) = \sum_{k=0}^{\infty} \frac{1}{k+1} {2k \choose k} \sum_{j=0}^{\infty} {2k+j \choose 2k} x^{2k+1+j}
$$

=
$$
\sum_{n=1}^{\infty} x^n \left[\sum_{k=0}^{\lfloor (n-1)/2 \rfloor} \frac{1}{k+1} {2k \choose k} {2k + (n-1-2k) \choose 2k} \right].
$$

Thus, for each $n \geq 1$, the number of PPTs with n nodes in A is

$$
\sum_{k=0}^{\lfloor (n-1)/2 \rfloor} \frac{1}{k+1} {2k \choose k} {n-1 \choose 2k} = \sum_{k=0}^{\lfloor (n-1)/2 \rfloor} \frac{(n-1)!}{(k+1)!k!(n-1-2k)!},
$$

as claimed.

6.8. By hand, one can check that $\tau_3 = 1$, $\tau_4 = 2$, $\tau_5 = 5$, and $\tau_6 = 14$. One then conjectures that the answer is the Catalan number τ_n = 1 $\frac{1}{n-1} \binom{2n-4}{n-2}$ $\binom{2n-4}{n-2}$ for all $n \geq 3$. There are then two reasonable strategies for proving this formula – by generating functions or by finding a bijection. I'll do both.

I. Generating functions

To describe the recursive structure of the set of all triangulations, consider a triangulation Δ of an *n*-gon, with $n > 3$. The edge marked with an arrow ("root edge") is on exactly one triangle of Δ . Delete the root edge, and mark the other two edges of its triangle to give a directed path of length two from the tail of the root edge to the head of the root edge. The result is an ordered pair (Λ, \mathcal{P}) of triangulations: Λ is a triangulation of the j-gon containing the tail of the root edge of Δ , and $\mathcal P$ is a triangulation of the k-gon containing the head of the root edge of Δ . We have to admit the degenerate case that $j = 2$ or $k = 2$, so let us put $\tau_2 = 1$. (Luckily, this fits our conjecture as well!) Note that in this decomposition the sizes of the polygons are related by $j + k = n + 1$. The converse construction is apparent: for any ordered pair (Λ, \mathcal{P}) of triangulations with Λ triangulating a j-gon $(j \geq 2)$ and \mathcal{P} triangulating a k-gon $(k \geq 2)$, we can stitch them together with a new root edge to obtain a triangulation of an n-gon, where $n = j + k - 1$. (Note that if n and j are given, then $k = n + 1 - j$.) Thus, we have established a bijection which shows that for all $n \geq 3$,

$$
\tau_n = \sum_{j=2}^{n-1} \tau_j \tau_{n+1-j}.
$$

Together with the base case $\tau_2 = 1$ this determines the sequence $(\tau_n :$ $n \geq 2$). You can check that it agrees with the data for n up to 6.

To solve this recurrence, consider the generating function

$$
T(x) = \sum_{n=2}^{\infty} \tau_n x^n = \sum_{\Delta} x^{n(\Delta)}.
$$

(In the second summation, Δ ranges over all triangulations of all polygons, and Δ triangulates an $n(\Delta)$ -gon.) We calculate that

$$
T(x) = \sum_{n=2}^{\infty} \tau_n x^n
$$

= $\tau_2 x^2 + \sum_{n=3}^{\infty} \left(\sum_{j=2}^{n-1} \tau_j \tau_{n+1-j} \right) x^n$
= $x^2 + \sum_{j=2}^{\infty} \tau_j \sum_{k=2}^{\infty} \tau_k x^{j+k-1}$
= $x^2 + T(x)^2 / x$.

That is, the generating function $T(x)$ satisfies the functional equation $T^2/x - T + x^2 = 0$, which we solve by the Quadratic Formula and the

Binomial Series expansion, to yield

$$
T(x) = \frac{1 \pm \sqrt{1 - 4x}}{2/x}
$$

= $\frac{x}{2} \pm \frac{x}{2} \left(1 - 2 \sum_{h=1}^{\infty} \frac{1}{h} {2h - 2 \choose h - 1} x^h \right)$
= $\sum_{h=1}^{\infty} \frac{1}{h} {2h - 2 \choose h - 1} x^{h+1}$
= $\sum_{n=2}^{\infty} \frac{1}{n - 1} {2n - 4 \choose n - 2} x^n$.

(In the penultimate equality we use the fact that the coefficients are nonnegative to determine the choice of the \pm sign.) That's it!

II. Bijection

Here is a bijection between the set of all triangulations and the set of all binary rooted trees. In this bijection, if a triangulation Δ corresponds to a BRT T, then $n(\Delta) = n(T) + 2$. Since we have enumerated BRTs, this shows that there are $\frac{1}{n-1} \binom{2n-4}{n-2}$ $n-2 \choose n-2$ triangulations of an *n*-gon, for each $n \geq 3$.

To define the bijection, start with a triangulation Δ . Put a node in the middle of each triangle – the node in the triangle containing the root edge of Δ will be the root node of T. Draw edges between nodes of T across the edges of Δ . Each node has at most two children, since it sits in a triangle of Δ and (except for the root node) one of its neighbours is its parent. Each child w of each node v is labelled left or right according to which edge of the triangle containing v is crossed when going from v to w : one enters the triangle containing v coming from its parent (or the root edge, in case v is the root node) and then crosses either the left or the right edge of the triangle to get to w . Thus, T is a BRT. The number of nodes of T is the number of triangles of Δ , which is $n(\Delta) - 2$. (The converse construction of Δ given T is left to you to explain.)

6.9. For each $n \geq 1$, let \mathcal{Y}_n be the set of 2-by-n Standard Young tableaux, and let \mathcal{V}_n be the set of SDLPs from $(0,0)$ to (n,n) . By Theorem 6.9, $\#\mathcal{V}_n = \frac{1}{n+1} \binom{2n}{n}$ $\binom{2n}{n}$. To answer the question it suffices to find a bijection $\mathcal{Y}_n \rightleftharpoons \mathcal{V}_n^{\prime\prime}$.

Let $A = (a_{ij})$ be a 2-by-n SYT. Define a sequence $P = s_1 s_2...s_{2n}$ as follows: each $s_i \in \{\mathsf{N}, \mathsf{E}\},\$ and

$$
s_i := \begin{cases} \nN & \text{if } i \text{ is in row one of } A, \\ \nE & \text{if } i \text{ is in row two of } A. \n\end{cases}
$$

The left-to-right and top-to-bottom increasing condition in the definition of SYT shows that for each $1 \leq k \leq 2n$, there are at least as many Ns as there are Es in the subsequence $s_1...s_k$. By Lemma 6.11 and Example 6.12, it follows that P is a SDLP.

Conversely, given a SDLP $P = s_1...s_{2n}$ construct a 2-by-n SYT as follows. Start with an empty 2-by-n array A of cells. As k goes from 1 to $2n$ (increasing by 1 each step), put the number k in the leftmost empty cell in the first row of A if $s_i = N$, or in the leftmost empty cell in the second row of A if $s_i = \mathsf{E}$. From Example 6.12 and Lemma 6.11 it is not too hard to see that the increasing conditions defining a SYT are satisfied by the result.

One sees after a while that composing these constructions in either order yields the identity functions $\mathcal{Y}_n \to \mathcal{Y}_n$ and $\mathcal{V}_n \to \mathcal{V}_n$. Therefore, these constructions are mutually inverse bijections, completing the proof.

7.2. (a) Assume that R is an integral domain. Suppose that $R[x]$ is not an integral domain, and let $p(x) = \sum_{i=0}^{n} a_i x^i$ and $q(x) = \sum_{j=0}^{m} b_j x^j$ be nonzero polynomials in $R[x]$ such that $p(x)q(x) = 0$. We may assume that p has degree n and q has degree m, so that $a_n \neq 0$ and $b_m \neq 0$ are nonzero elements of R. Taking the coefficient of x^{n+m} on both sides of the equation $p(x)q(x) = 0$, we see that $a_n b_m = 0$. This shows that R contains zero-divisors, contradicting the assumption that R is an integral domain.

(b) Note that $1/x$ is in $R(x)$ but not in $R[[x]]$, as is clearly seen. Also, $(1-4x)^{-1/2} = \sum_{n=0}^{\infty} {2n \choose n}$ $\binom{2n}{n}x^n$ is in $R[[x]]$ but not in $R(x)$. To see this, if it were a rational function then $(1-4x)^{-1/2} = p(x)/q(x)$ for two polynomials, with $q(x) \neq 0$. But then $q(x)^2 = (1 - 4x)p(x)^2$. The LHS is a polynomial of even degree, while the RHS is a polynomial of odd degree. This contradiction shows that $(1-4x)^{-1/2}$ is not in $R(x)$. (c) Assume that R is a field, and let $p(x)/q(x)$ be a quotient of polynomials, with $q(x) \neq 0$. If k is the smallest power of x that occurs with nonzero coefficient in $q(x)$ then we can write $q(x) = c_k x^k f(x)$ for some polynomial $f(x)$ with constant term equal to one, and $c_k \neq 0$. By Proposition 7.5, $f(x)$ is invertible in $R[[x]]$, which is a subset of $R((x))$,

8

and it follows that $q(x)^{-1} = c_k^{-1}$ $k^{-1}x^{-k}f(x)^{-1}$ in $R((x))$. Thus,

$$
\frac{p(x)}{q(x)} = p(x)q(x)^{-1} = p(x)c_k^{-1}x^{-k}f^{-1}(x)
$$

is a formal Laurent series in $R((x))$. Thus, $R(x)$ is a subset of $R((x))$. (d) Note that $1/2$ is in $\mathbb{Z}(x)$ but not in $\mathbb{Z}((x))$. (From part (b) it follows that $\mathbb{Z}(x)$ is contained in $\mathbb{Q}((x))$.

(e) The ring $R[[x]][y]$ consists of polynomials in y whose coefficients are power series in $R[[x]]$: that is, something of the form $\sum_{i=0}^{n} a_i(x)y^i$. The ring $R[y][[x]]$ consists of power series in x whose coefficients are polynomials in $R[y]$: that is, something of the form $\sum_{j=0}^{\infty} b_j(y) x^j$. Writing an element of the form $\sum_{i=0}^{n} a_i(x) y^i$ in terms of powers of x, we see that it has the form $\sum_{j=0}^{\infty} \overline{b_j(y)} x^j$ and is such that $\deg(b_j) \leq n$ for all $j \in \mathbb{N}$. Thus $R[[x]][y]$ is contained in $R[y][[x]]$. The element

$$
\frac{1}{1 - (y+1)x} = \sum_{j=0}^{\infty} (1+y)^j x^j
$$

is an element of $R[y][[x]]$ that is not contained in $R[[x]][y]$.

7.4. To begin with, the product rule is straightforward for powers of x: for any integers $m, n \in \mathbb{Z}$:

$$
\frac{d}{dx}(x^m \cdot x^n) = (m+n)x^{m+n-1}
$$

\n
$$
= (mx^{m-1})x^n + x^m(nx^{n-1})
$$

\n
$$
= \left(\frac{d}{dx}x^m\right)x^n + x^m\left(\frac{d}{dx}x^n\right).
$$

Now, since d/dx is a linear operator, it follows that for any two formal Laurent series $f(x) = \sum_{m=I(f)}^{\infty} a_m x^m$ and $g(x) = \sum_{n=I(g)}^{\infty} b_n x^n$ we have

$$
\frac{d}{dx}(f(x)g(x)) = \frac{d}{dx}\sum_{m=I(f)}^{\infty}\sum_{n=I(g)}^{\infty}a_mb_nx^{m+n}
$$
\n
$$
= \sum_{m=I(f)}^{\infty}\sum_{n=I(g)}^{\infty}a_mb_n [(mx^{m-1})x^n + x^m(nx^{n-1})]
$$
\n
$$
= \left[\sum_{m=I(f)}^{\infty}ma_mx^{m-1}\sum_{n=I(g)}^{\infty}b_nx^n\right] + \left[\sum_{m=I(f)}^{\infty}a_mx^m\sum_{n=I(g)}^{\infty}nb_nx^{n-1}\right]
$$
\n
$$
= \left(\frac{d}{dx}f(x)\right)g(x) + f(x)\left(\frac{d}{dx}g(x)\right).
$$

That's it!

7.6. The sequence of formal power series is defined by $f_0(x) := 1$, $f_1(x) := 1$, and $f_{k+1}(x) := f_k(x) + x^k f_{k-1}(x)$ for all $k \ge 1$. This sequence of formal power series converges. (Writing out the first few, up to $f_7(x)$, say, is a good example.) To check the definition of convergence, consider the sequence of coefficients of x^n , for any $n \in \mathbb{N}$. We must show that this sequence of coefficients is eventually constant. That is, we must show that there is an index K_n and a value A_n such that for all $k \geq K_n$, $[x^n] f_k(x) = A_n$. Now, from the defining recurrence, note that if $k \geq n+1$ then

$$
[xn]fk+1(x) = [xn]fk(x) + [xn]xkfk-1(x) = [xn]fk(x).
$$

Thus, for all $k \geq n+1$ it follows by induction on k that

$$
[xn]fk(x) = [xn]fn+1(x).
$$

This verifies the definition of convergence, but the identity of the limiting series $f(x) = \lim_{k \to \infty} f_k(x)$ remains mysterious.

10