
CO 330 Fall 2011 Solutions #4
due Friday, Nov.4.

Exercises: 7.8(a), 7.11, 7.12(a,b,c), 8.1, 8.4, 8.6, 9.1, 9.3.

7.8(a) By the Product Rule (Exercise 7.4), for any power series f(x)
and g(x) in R[[x]] we have

d

dx
(f(x)g(x)) = f ′(x)g(x) + f(x)g′(x).

We begin by proving that d
dx
g(x)n = ng(x)n−1g′(x) for all n ∈ N.

When n = 0 we have g(x)0 = 1 on the LHS, and (even if g(x) is
not invertible) the RHS is zero, so the formula holds. Also, when
n = 1 the formula states that d

dx
g(x) = g′(x), which is true. This

is the basis of induction. Proceeding to the induction step, consider
g(x)n+1 = g(x)n · g(x). Applying the Product Rule (Exercise 7.4) and
the induction hypothesis, we calculate that

d

dx
g(x)n+1 = (ng(x)n−1g′(x))g(x) + g(x)ng′(x)

= (n+ 1)g(x)ng′(x),

as required. This finishes the induction and establishes the claim.
Now, consider any power series f(x) =

∑∞
n=0 anx

n in R[[x]]. By lin-
earity of the differentiation operator and the claim above, we calculate
that

d

dx
f(g(x)) =

∞∑
n=0

an
d

dx
g(x)n

=
∞∑
n=0

anng(x)n−1g′(x) = f ′(g(x))g′(x)

since f ′(x) =
∑∞

n=0 nanx
n−1. If either f(x) is a polynomial or the

constant term of g(x) is zero then everything in sight is a well-defined
formal power series. That’s it!
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7.11. First, note that[
a+ b
b

]
q

=
[a+ b]!q
[a]!q[b]!q

=
[a+ b]q[a+ b− 1]q · · · [a+ 2]q[a+ 1]q

[b]q[b− 1]q · · · [2]q[1]q
.

Now, for any j ∈ N,

[a+ j]q
[j]q

=
1 + q + q2 + · · ·+ qa+j−1

1 + q + q2 + · · · qj−1

=
(1 + q + q2 + · · ·+ qa+j−1)(1− q)

(1 + q + q2 + · · · qj−1)(1− q)

=
1− qa+j

1− qj
.

Therefore, [
a+ b
b

]
q

=
b∏

j=1

(
1− qa+j

1− qj

)
.

For any power of q, say qn, once a ≥ n the sequence of coefficients of

qn in

[
a+ b
b

]
q

becomes constant, agreeing with the coefficient of qn

in
∏b

j=1(1− qj)−1. Therefore,

lim
a→∞

[
a+ b
b

]
q

=
b∏

j=1

1

1− qj
.

7.12(a) From Example 7.9(a) we have

log

(
1

1− x

)
=
∞∑
k=1

xk

k
.

Let’s use this by writing

f(x) =
1

1− g(x)

so that

log(f(x)) = log

(
1

1− g(x)

)
=
∞∑
k=1

g(x)k

k
.

The issue is whether the limit

lim
K→∞

K∑
k=1

g(x)k

k
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exists. But from f(x) = (1−g(x))−1, we get f(x)−1 = 1−g(x), so that
g(x) = 1− f(x)−1. Since [x0]f(x) = 1 it follows that [x0]f(x)−1 = 1 as
well, and hence that [x0]g(x) = 0. This is enough to ensure that the
above limit exists, by Proposition 7.15(iii).

7.12(b) One must be a little bit careful, because log(x) is not a power
series in x. Instead, one must use log((1− x)−1). Note that

d

dx
log

(
1

1− x

)
=

d

dx

∞∑
k=1

xk

k
=
∞∑
k=1

xk−1 =
1

1− x
.

Now, write f(x) = (1− g(x))−1 as in part (a), and use the Chain Rule
(Exercise 7.8(a)) to see that

f ′(x) = (−1)(1− g(x))−2(−g′(x)),

so that

g′(x) = (1− g(x))2f ′(x).

Finally, we calculate using the Chain Rule again, that

d

dx
log(f(x)) =

d

dx
log

(
1

1− g(x)

)
=

1

1− g(x)
g′(x) =

(1− g(x))2

1− g(x)
f ′(x)

= f(x)−1f ′(x),

as required.

7.12(c) From part (a), log(exp(x)) =
∑∞

n=0 cnx
n is a well-defined

formal power series. We determine the coefficients cn by applying part
(b). Note that d

dx
exp(x) = exp(x), so that

d

dx
log(exp(x)) = exp(x)−1 exp(x) = 1.

That is,

1 =
d

dx

∞∑
n=0

cnx
n =

∞∑
n=0

ncnx
n−1.

From this we see that c1 = 1 and cn = 0 for all n ≥ 2. This gives
no information about c0, however. But from the argument for part (a)
we see that [x0] log(f(x)) = 0 for any formal power series f(x) with
[x0]f(x) = 1. Therefore, c0 = 0 as well, and so

log(exp(x)) = x,
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as required.

8.1. Fix a positive integer c. Let Q be the set of plane planted trees
(PPTs) in which the number of children of each node is a multiple of c.
By deleting the root node of a tree in Q we obtain an ordered sequence
of substrees in Q. The number of subtrees must be a multiple of c
(maybe zero). Thus, we have a bijection

Q 
 {�} ×
∞⋃
m=0

Qmc.

The number of nodes in the original tree is one (for the root node) plus
the total number of nodes in all the subtrees. This leads to the following
functional equation for the generating function Q(x) =

∑
T∈Q x

n(T ):

Q(x) = x
∞∑
m=0

Q(x)mc =
x

1−Q(x)c
.

The number of PPTs in Q with n nodes is [xn]Q(x). We can calculate
this using LIFT with G(u) = 1/(1− uc), by the form of the functional
equation for Q(x). For n = 0, [x0]Q(x) = 0, and for all n ≥ 1,

[xn]Q(x) =
1

n
[un−1]

(
1

1− uc

)n
=

1

n
[un−1]

∞∑
j=0

(
n− 1 + j

n− 1

)
ujc

=

{
1
n

(
n−1+j
n−1

)
if n = jc+ 1 for some j ∈ N,

0 otherwise.

That’s it!

8.4. Let U be the set of plane planted trees (PPTs) and for T ∈ U let
f(T ) be the number of nodes of T with at least three children. From
the recursive structure of U we have

U 
 {�} ×
∞⋃
d=0

Ud

T ↔ (�, S1, S2, ..., Sd)

n(T ) = 1 + n(S1) + n(S2) + · · ·+ n(Sd)

f(T ) = χ[d ≥ 3] + f(S1) + f(S2) + · · ·+ f(Sd)
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where, as ususal, χ[P] = 1 if P is true, and χ[P] = 0 if P is false.
Thus, the generating function

U(x, y) =
∑
T∈U

xn(T )yf(T )

satisfies the functional equation

U = x(1 + U + U2 + y(U3 + U4 + · · · ))

= x

(
1

1− U
+ (y − 1)

U3

1− U

)
= x

(
1 + (y − 1)U3

1− U

)
.

LIFT applies here with F (u) = u and G(u) = (1 + (y − 1)u3)/(1− u).
The number of PPTs with n ≥ 1 nodes is 1

n

(
2n−2
n−1

)
, by Theorem 6.7.

The sum of f(T ) over all PPTs with n ≥ 4 nodes is

[xn]
∂

∂y
U(x, y)

∣∣∣∣
y=1

=
∂

∂y
[xn]U(x, y)

∣∣∣∣
y=1

=
∂

∂y

1

n
[un−1]

(
1 + (y − 1)u3

1− u

)n∣∣∣∣
y=1

= [un−1]
u3

(1− u)n

= [un−4]
∞∑
j=0

(
n− 1 + j

n− 1

)
uj =

(
2n− 5

n− 1

)
.

Therefore, the average value of f(T ) over all PPTs with n ≥ 4 nodes
is

f(n) =

(
2n−5
n−1

)
1
n

(
2n−2
n−1

)
=

n · (2n− 5)! · (n− 1)! · (n− 1)!

(n− 1)! · (n− 4)! · (2n− 2)!

=
n(n− 1)(n− 2)(n− 3)

(2n− 2)(2n− 3)(2n− 4)
=

n(n− 3)

4(2n− 3)
=
n2 − 3n

8n− 12
,

as claimed.
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8.6. Let U be the set of plane planted trees (PPTs) and for T ∈ U let
d(T ) be the degree of the root node of T . From the recursive structure
of U we have

U 
 {�} ×
∞⋃
d=0

Ud

T ↔ (�, S1, S2, ..., Sd)

n(T ) = 1 + n(S1) + n(S2) + · · ·+ n(Sd)

d(T ) = d

Thus, the generating function

U = U(x, y) =
∑
T∈U

xn(T )yd(T )

satisfies the functional equation

U = x(1 + yR + y2R2 + · · · ) = x
1

1− yR

in which R = R(x) = U(x, 1). Thus, R satisfies the functional equation

R = x
1

1−R
,

which is the familiar recursion for PPTs from Theorem 6.7. LIFT
applies here with F (u) = 1/(1− yu) and G(u) = 1/(1− u). (One has
to be careful about the “exponent shift” in the following calculation,
since U = xF (R).) Note that F ′(u) = y/(1 − yu)2. The sum of d(T )
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over all PPTs with n ≥ 2 nodes is

[xn]
∂

∂y
U(x, y)

∣∣∣∣
y=1

=
∂

∂y
[xn]xF (R(x))

∣∣∣∣
y=1

=
∂

∂y

1

n− 1
[un−2]F ′(u)G(u)n−1

∣∣∣∣
y=1

=
∂

∂y

1

n− 1
[un−2]

y

(1− yu)2(1− u)n−1

∣∣∣∣
y=1

=
1

n− 1
[un−2]

1

(1− u)n−1

(
1

(1− u)2
+

2u

(1− u)3

)
=

1

n− 1
[un−2]

1 + u

(1− u)n+2

=
1

n− 1

((
2n− 1

n+ 1

)
+

(
2n− 2

n+ 1

))
Thus, the average of d(T ) among all 1

n

(
2n−2
n−1

)
PPTs with n ≥ 2 nodes

is

d(n) =
1

n−1

((
2n−1
n+1

)
+
(
2n−2
n+1

))
1
n

(
2n−2
n−1

)
=

n

n− 1
· (n− 1)!(n− 1)!

(2n− 2)!

(
(2n− 1)!

(n+ 1)!(n− 2)!
+

(2n− 2)!(n− 2)

(n+ 1)!(n− 3)!(n− 2)

)
=

n(n− 1)!(n− 1)!(2n− 2)!

(n− 1)(2n− 2)!(n+ 1)!(n− 2)!
(2n− 1 + n− 2)

=
3n− 3

n+ 1
,

as claimed.

9.1. These are all direct applications of Theorem 9.8.

9.1(a)

∞∏
i=1

(
1

1− x2iy

)
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9.1(b)
∞∏
i=1

(
1 + x2i−1y

1− x2iy

)
9.1(c)

∞∏
i=1

(
1

(1− x4iy)(1− x4i−2y2)

)
9.1(d)

∞∏
i=1

(
1 + x2i−1y − x4i−2y2

(1− x4iy2)(1− x4i−2y2)

)

9.3(a) Each part occurs at most three times, so Mj = {0, 1, 2, 3} for
all j ≥ 1, using the notation of Theorem 9.8. The generating function
for this set A keeping track of xn(λ) is

ΦA(x) =
∑
λ∈A

xn(λ) =
∞∏
j=1

(
1 + xj + x2j + x3j

)
=
∞∏
j=1

(
1− x4j

1− xj

)
.

9.3(b) Each even part occurs at most once, so Mj = {0, 1} if j = 2i
is even, and Mj = N if j = 2i− 1 is odd, for all i ≥ 1. The generating
function for this set B keeping track of xn(λ) is

ΦB(x) =
∑
λ∈B

xn(λ) =
∞∏
i=1

1 + x2i

1− x2i−1
.

9.3(c) To see that there are the same number of partitions of size n
in A as in B (for all n ∈ N) it suffices to prove that ΦA(x) = ΦB(x).
Here we go:

ΦA(x) =
∞∏
j=1

(
1− x4j

1− xj

)

=
∞∏
j=1

(
(1− x2j)(1 + x2j)

1− xj

)

=
∞∏
j=1

(
1− x2j

1− x2j−1

)
= ΦB(x).

Done!


