CO 330 Fall 2011 Solutions #5
due Friday, Nov.18.

Exercises: 9.4, 9.6, 9.8, 10.3, 10.4, 10.11.
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9.6 We begin with the generating function for the set of all partitions,
with respect to both size and length ( = number of parts).
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Setting y = —1 in this, the partition A will contribute z™™ if k()) is

even, or —z"™ if k()\) is odd. Thus,
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In this calculation OD is the set of partitions with odd and distinct
parts, and the last equality uses the fact that, since A € OD is a par-
tition in which every part is odd, it follows that k(A) = n(\) (mod 2).
By equating the coefficients of 2™ on both ends of this calculation we

obtain the desired result.
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(c) To prove the result it suffices to show that
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By equating the coefficient of ™ on both sides, the result follows. Now
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That completes the proof.

10.3(a) The generating function for partitions is
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and by Euler’s Pentagonal Number Theorem,
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Therefore
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in which p(i) = 0 for all ¢ < 0. Equating the coefficients of 2™ on both

sides yields
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as claimed.

10.4 Recall the ¢-Binomial Theorem:
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The infinite product converges as a sequence of formal power series in
Z[[g]] by Proposition 7.14.




10.11 To prove Gauss’s identity
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= 2 H(l +19)(1 — t%).

Comparing these results proves Gauss’s identity.




