
CO 330 Fall 2011 Solutions #5
due Friday, Nov.18.

Exercises: 9.4, 9.6, 9.8, 10.3, 10.4, 10.11.

9.4
(a)

A(x) =
∞∏
j=1

(1 + xj + x4j + x5j).

(b)

B(x) =
∞∏
i=1

1 + x4i

1− x2i−1
.

(c)

A(x) =
∞∏
j=1

(1 + xj)(1 + x4j)

=
∞∏
j=1

(1 + xj)(1 + x4j)
1− xj

1− xj

=
∞∏
j=1

(1− x2j)(1 + x4j

1− xj

=
∞∏
j=1

1 + x4j

1− x2j−1
= B(x).

9.6 We begin with the generating function for the set of all partitions,
with respect to both size and length ( = number of parts).

∑
λ∈Y

xn(λ)yk(λ) =
∞∏
j=1

1

1− xjy
.
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Setting y = −1 in this, the partition λ will contribute xn(λ) if k(λ) is
even, or −xn(λ) if k(λ) is odd. Thus,

∞∑
n=0

(pe(n)− po(n))xn =
∞∏
j=1

1

1 + xj

=
∞∏
j=1

(
1

1 + xj
· 1− xj

1− xj

)

=
∞∏
j=1

1− xj

1− x2j

=
∞∏
j=1

(1− x2j−1)

=
∑
λ∈OD

xn(λ)(−1)k(λ)

=
∞∑
n=0

(−1)nod(n)xn.

In this calculation OD is the set of partitions with odd and distinct
parts, and the last equality uses the fact that, since λ ∈ OD is a par-
tition in which every part is odd, it follows that k(λ) ≡ n(λ) (mod 2).
By equating the coefficients of xn on both ends of this calculation we
obtain the desired result.

9.8 (a)

A(x, y) =
∑
λ∈Y

xn(λ)ym1(λ)

= (1 + xy + x2y2 + x3y3 + · · · )
∞∏
j=2

1

1− xj

=
1

1− xy

∞∏
j=2

1

1− xj
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(b)

B(x, y) =
∑
λ∈Y

xn(λ)yb(λ)

=
∞∏
j=1

(
1 + xjy + x2jy + x3jy + · · ·

)
=

∞∏
j=1

(
1 +

xjy

1− xj

)
(c) To prove the result it suffices to show that

∂

∂y
A(x, y)

∣∣∣∣
y=1

=
∂

∂y
B(x, y)

∣∣∣∣
y=1

.

By equating the coefficient of xn on both sides, the result follows. Now

∂

∂y
A(x, y)

∣∣∣∣
y=1

=
x

(1− x)2

∞∏
j=2

1

1− xj

=
x

1− x

∞∏
j=1

1

1− xj

and

∂

∂y
B(x, y)

∣∣∣∣
y=1

=
∞∑
j=1

xj

1− xj
∞∏
i 6=j

1

1− xi

=

(
∞∏
i=1

1

1− xi

)
∞∑
j=1

xj

=
x

1− x

∞∏
i=1

1

1− xi
.

That completes the proof.

10.3(a) The generating function for partitions is
∞∑
n=0

p(n)xn =
∞∏
j=1

1

1− xj
,

and by Euler’s Pentagonal Number Theorem,
∞∏
j=1

(1− xj) =
∞∑

h=−∞

(−1)hxh(3h−1)/2.
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Therefore

1 =
∞∏
j=1

1− xj

1− xj

=

(
∞∑
i=0

p(i)xn

)(
∞∑

h=−∞

(−1)hxh(3h−1)/2

)

=
∞∑
n=0

(
∞∑

h=−∞

(−1)hp(n− h(3h− 1)/2)

)
xn

in which p(i) = 0 for all i < 0. Equating the coefficients of xn on both
sides yields

∞∑
h=−∞

(−1)hp

(
n− h(3h− 1)

2

)
=

{
1 if n = 0,
0 if n > 0,

as claimed.

10.4 Recall the q-Binomial Theorem:

n∏
i=1

(1 + qix) =
n∑
k=0

qk(k+1)/2

[
n
k

]
q

xk.

Thus

lim
n→∞

n∑
k=0

qk(k+1)/2

[
n
k

]
q

(−1)k

= lim
n→∞

n∏
i=1

(1− qi)

=
∞∏
i=1

(1− qi)

=
∞∑

h=−∞

(−1)hqh(3h−1)/2.

The infinite product converges as a sequence of formal power series in
Z[[q]] by Proposition 7.14.
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10.11 To prove Gauss’s identity
∞∏
j=1

(1 + xj)(1− x2j) =
∞∑
h=0

xh(h+1)/2

we specialize the Jacobi Triple Product Formula
∞∑

h=−∞

xh
2

yh =
∞∏
i=1

(1 + x2i−1y)(1 + x2i−1y−1)(1− x2i).

Consider putting x = y = t1/2. Then

xh
2

yh = th
2/2+h/2 = th(h+1)/2,

which is good. Also notice that if h ≥ 0 and k = −1− h then

k(k + 1)

2
=

(−1− h)(−1− h+ 1)

2
=
h(h+ 1)

2
.

Therefore
∞∑

h=−∞

th(h+1)/2 = 2
∞∑
h=0

th(h+1)/2.

Finally, the RHS of the JTPF specializes to
∞∏
i=1

(1 + t(2i−1)/2t1/2)(1 + t(2i−1)/2t−1/2)(1− t(2i)/2)

=
∞∏
i=1

(1 + ti)(1 + ti−1)(1− ti)

= 2
∞∏
i=1

(1 + ti)2(1− ti)

= 2
∞∏
i=1

(1 + ti)(1− t2i).

Comparing these results proves Gauss’s identity.


