CO 330 Fall 2011 Solutions #6
due Friday, Dec.2.

Exercises: 11.5, 11.7, 11.8, 11.9, 11.12, 11.14(a), 11.15(a).

11.5.

(a) Let D be the class of derangements — that is, permutations with
no fixed points. Let € be the class of sets, and for integer £ > 1 let
Ci be the class of k-cycles — that is, cyclic permutations on a set of k
elements. Then Csy = @20:2 Gy is the class of cyclic permutations with
at least 2 elements, and D = €[Cx»]. Now, the exponential generating
function of D is

D(x) = exp (Z%k)

k=2

o))

exp(—z)
11—z

)

as claimed.

(b) From part (a) we calculate that

1D, = nl[z"] —exp(—x)

= nl[z"] (Z(—le—:) <Zx3)

as was to be shown.

11.7. By Example 11.19, the class of set partitions is €[€>1]. For

0 <k <mn,let S(n, k) be the number of partitions of the set {1,2,...,n}
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with k& blocks. Then

ZZS n, k)y i( >, y'”') = exp(y exp(z) — y).

n=0 k=0 TEPtny,

Therefore, for 0 < k£ < n,

S(n,k) = nllz"y*]exp(yexp(z) —y)

as in Exercise 3.11.

11.8. Let 8 be the class of permutations, € the class of cyclic permu-
tations, and € the class of sets. Let ¢(o, k) be the number of cycles of
length k£ in the permutation o, and consider

S(z,y) =) (Z yo("”‘”) %

n=0 \oc&$§,

(a) Recall that 8 = €[C], and let €4 be the class of k-cycles. Thus
S(z,y) = exp(C(z,y)) in which

Zy"“ log(l1 ) %k(y—l)-

(Here, as usual, for a proposition P we have x[P] = 1 if P is true, and
X[P] = 0 if P is false.) That is,

S(z,y) = exp (log (ﬁ) + %k(y _ 1)) _ exp(x’“l(gi; V/k)
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b) From part (a) the average number of k-cycles among all n! per-
(b) p g y g p
mutations of the set {1,2,...,n} is

1 0 explat(y — 1)/k)

— ™
n!n'[x]ay 1—x

y=1

L exp(a*(y — 1)/k)2 /k

y=1

1
k 11—z

B {1% if 1<k<n,
- 0 ifn<k,

as was to be shown.

11.9. Let Y be the class of labelled (unrooted) trees in which each
vertex has degree 1 or 3. Let Q be the class of labelled rooted trees in
which each vertex has either 0 or 2 children. For each k € N, let & be
the class of k-sets. Then

Y =E1x(Qa E3(Q])
and
Q=& % (& @ &E[Q]),

as is easily seen by drawing a suitably general picture of a tree in Y. The
exponential generating functions of these classes satisfy the equations

Y*=2(Q+Q°/6)
and
Q==(1+@Q"/2),

respectively. Therefore (applying LIFT) we see that for n > 2, the
number of trees in Y on the vertex-set {1,2,...,n} is

Yol = 13l =l (0)
— (n—1)[2"]2(Q + Q%/6).
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We use LIFT with F(u) = u +u®/6 and G(u) = 1 + u*/2. Notice that
F'(u) = 1+ u?/2 = G(u), which is nice. Applying LIFT, we have

Yl = (n—=2"F(Q)
= (n =" 2)(1 +u?/2)"

- -2y (1%

k=0
B 0 if nis odd,
T B =2k +2.

This is what was to be shown.

11.12. Let X be the class of triangle-trees, and consider a rooted
triangle-tree (T,v) € K% for some finite set X. Deleting v, 7'\ v
decomposes naturally as a set of connected components, each of which
is naturally an unordered pair of rooted triangle-trees in K°®. That is,

K® =& * E[E[K]].
So for the exponential generating functions we have the equation
K* = x (exp((K°®)*/2).
A straightforward application of LIFT completes the calculation:

1 ° n [ ]
Kol = 1K = (0= DK @)
— 1!
_ %[un—l] exp (2 /2)"
_ (TL— 1>‘ n—1 = njuzj
_ 0 if n is even,
% ifn=2j+1>1.

There it is!

11.14(a). Let Q be the class of oriented cacti, and consider a rooted
oriented cactus (Q,v) € Q% for some finite set X. Deleting the root
vertex v € X from @) we obtain () \ v. Every connected component of
Q) v is a nonempty totally ordered sequence of structures in Q°. That
is,

Q* =& % E[Q° * (Q%)"].



Hence, for the exponential generating function we have the equation

Q° =z exp(Q°/(1 - Q°)).
Now we apply LIFT:

0.0 = 193] = (n— D1IQ (@)
= O D exp(uf (1 - )
- R g ()
_ (n—l)!::i:n;_l<(n_1;z)1+j—1>
_ (n—l)'ji%l";!l(?:f)
_ (n—l)'j:: ”;Kﬂ]:)

Done! ;-D

11.15(a). Let T be the class of trees, and let R = T* be the class
of rooted trees. Then R = &; * E[R] as we have seen many times. Let
7(7T,v) be the number of terminal vertices of the rooted tree (7', v), and
consider the mixed bivariate generating function

o0

Ry =Y [ X v )5

n=0 \ (T,w)eR,
Consider this equivalence of classes:
R = & *E[R]
Ry = (&1*&[R))x
) < (v, {(S1,w1), ..., (Sk,wi)})
n(T) = 1+4n(S)+ - +n(S)
) = xlk=0]+7(S1,wi) + -+ 7(Sk, wi).
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We see that the exponential generating function R(z,y) satisfies the
equation

R = xz(exp(R) +y —1).
Sweet! So the number of rooted trees on the vertex-set {1,2...,n} that
have exactly k terminal vertices is (by LIFT)

n![z"y*|R(z,y)
= (n—DI[y*u"(exp(u) +y — 1)

= (n—Dy*u"] Xn: (7;) y'(exp(u) — 1)

= (n=Dlu"] (Zi)zexp(U) -1

To compare, since the class of set partitions is €[€s;], for integers
0<b<a,

|

S(a,b) = allg't"] exp(gexp(t) - at) = 55[t"] (exp(t) — 1)

So
_ (TL _ 1)| n—1 n—k
Sn—1,n—k)= (n—k)![t J(exp(t) — 1),
The same with u in place of ¢, from which we continue the thread of
the main computation:

n![z"y"|R(x, y)

= = Dy expl) = 1)
nl (n—=1) ., e

_ <”_k)!(z> -S(n—1,n—k).

That’s what we wanted. Yay! ;-p




