
CO 330 Fall 2011 Solutions #6
due Friday, Dec.2.

Exercises: 11.5, 11.7, 11.8, 11.9, 11.12, 11.14(a), 11.15(a).

11.5.
(a) Let D be the class of derangements – that is, permutations with
no fixed points. Let E be the class of sets, and for integer k ≥ 1 let
Ck be the class of k-cycles – that is, cyclic permutations on a set of k
elements. Then C≥2 =

⊕∞
k=2 Ck is the class of cyclic permutations with

at least 2 elements, and D ≡ E[C≥2]. Now, the exponential generating
function of D is

D(x) = exp

(
∞∑
k=2

xk

k

)

= exp

(
log

(
1

1− x

)
− x
)

=
exp(−x)

1− x
,

as claimed.

(b) From part (a) we calculate that

|Dn| = n![xn]
exp(−x)

1− x

= n![xn]

(
∞∑
i=0

(−1)i
xi

i!

)(
∞∑
j=0

xj

)

= n!
n∑
i=0

(−1)i

i!
,

as was to be shown.

11.7. By Example 11.19, the class of set partitions is E[E≥1]. For
0 ≤ k ≤ n, let S(n, k) be the number of partitions of the set {1, 2, ..., n}
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2

with k blocks. Then

∞∑
n=0

n∑
k=0

S(n, k)yk
xn

n!
=
∞∑
n=0

( ∑
π∈Ptnn

y|π|

)
xn

n!
= exp(y exp(x)− y).

Therefore, for 0 ≤ k ≤ n,

S(n, k) = n![xnyk] exp(y exp(x)− y)

= n![xnyk]
∞∑
j=0

yj(exp(x)− 1)j

j!

=
n!

k!
[xn]

k∑
i=0

(
k

i

)
exp(x)i(−1)n−i

=
n!

k!
[xn]

k∑
i=0

(−1)n−i
(
k

i

)
in

n!

=
1

k!

k∑
i=0

(−1)n−i
(
k

i

)
in,

as in Exercise 3.11.

11.8. Let S be the class of permutations, C the class of cyclic permu-
tations, and E the class of sets. Let c(σ, k) be the number of cycles of
length k in the permutation σ, and consider

S(x, y) =
∞∑
n=0

(∑
σ∈Sn

yc(σ,k)

)
xn

n!
.

(a) Recall that S ≡ E[C], and let Ck be the class of k-cycles. Thus
S(x, y) = exp(C(x, y)) in which

C(x, y) =
∞∑
j=1

yχ[j=k]
xj

j
= log

(
1

1− x

)
+
xk

k
(y − 1).

(Here, as usual, for a proposition P we have χ[P] = 1 if P is true, and
χ[P] = 0 if P is false.) That is,

S(x, y) = exp

(
log

(
1

1− x

)
+
xk

k
(y − 1)

)
=

exp(xk(y − 1)/k)

1− x
.
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(b) From part (a) the average number of k-cycles among all n! per-
mutations of the set {1, 2, ..., n} is

1

n!
n![xn]

∂

∂y

exp(xk(y − 1)/k)

1− x

∣∣∣∣
y=1

= [xn]
1

1− x
exp(xk(y − 1)/k)xk/k

∣∣∣∣
y=1

=
1

k
[xn]

xk

1− x

=

{
1/k if 1 ≤ k ≤ n,

0 if n < k,

as was to be shown.

11.9. Let Y be the class of labelled (unrooted) trees in which each
vertex has degree 1 or 3. Let Q be the class of labelled rooted trees in
which each vertex has either 0 or 2 children. For each k ∈ N, let Ek be
the class of k-sets. Then

Y• ≡ E1 ∗ (Q⊕ E3[Q])

and

Q ≡ E1 ∗ (E0 ⊕ E2[Q]) ,

as is easily seen by drawing a suitably general picture of a tree in Y. The
exponential generating functions of these classes satisfy the equations

Y • = x(Q+Q3/6)

and

Q = x(1 +Q2/2),

respectively. Therefore (applying LIFT) we see that for n ≥ 2, the
number of trees in Y on the vertex-set {1, 2, ..., n} is

|Yn| =
1

n
|Y•n| =

1

n
n![xn]Y •(x)

= (n− 1)![xn]x(Q+Q3/6).
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We use LIFT with F (u) = u+ u3/6 and G(u) = 1 + u2/2. Notice that
F ′(u) = 1 + u2/2 = G(u), which is nice. Applying LIFT, we have

|Yn| = (n− 1)![xn−1]F (Q)

= (n− 2)![un−2](1 + u2/2)n

= (n− 2)![un−2]
n∑
k=0

(
n

k

)
u2k

2k

=

{
0 if n is odd,

(2k)!
2k

(
2k+2
k

)
if n = 2k + 2.

This is what was to be shown.

11.12. Let K be the class of triangle-trees, and consider a rooted
triangle-tree (T, v) ∈ K•X for some finite set X. Deleting v, T r v
decomposes naturally as a set of connected components, each of which
is naturally an unordered pair of rooted triangle-trees in K•. That is,

K• ≡ E1 ∗ E[E2[K
•]].

So for the exponential generating functions we have the equation

K• = x (exp((K•)2/2).

A straightforward application of LIFT completes the calculation:

|Kn| =
1

n
|K•n| = (n− 1)![xn]K•(x)

=
(n− 1)!

n
[un−1] exp(u2/2)n

=
(n− 1)!

n
[un−1]

∞∑
j=0

nju2j

j!2j

=

{
0 if n is even,

(2j)!(2j+1)j−1

j!2j
if n = 2j + 1 ≥ 1.

There it is!

11.14(a). Let Q be the class of oriented cacti, and consider a rooted
oriented cactus (Q, v) ∈ Q•X for some finite set X. Deleting the root
vertex v ∈ X from Q we obtain Qr v. Every connected component of
Qrv is a nonempty totally ordered sequence of structures in Q•. That
is,

Q• ≡ E1 ∗ E[Q• ∗ (Q•)∗].



5

Hence, for the exponential generating function we have the equation

Q• = x exp(Q•/(1−Q•)).
Now we apply LIFT:

|Qn| =
1

n
|Q•n| = (n− 1)![xn]Q•(x)

=
(n− 1)!

n
[un−1] exp(u/(1− u))n

=
(n− 1)!

n
[un−1]

∞∑
j=0

njuj

j!(1− u)j

=
(n− 1)!

n

n−1∑
j=0

nj

j!
[un−1−j]

∞∑
i=0

(
i+ j − 1

j − 1

)
ui

= (n− 1)!
n−1∑
j=0

nj−1

j!

(
(n− 1− j) + j − 1

j − 1

)

= (n− 1)!
n−1∑
j=0

nj−1

j!

(
n− 2

j − 1

)

= (n− 1)!
n−1∑
j=0

nj−1

j!

(
n− 2

n− 1− j

)
.

Done! ;-D

11.15(a). Let T be the class of trees, and let R = T• be the class
of rooted trees. Then R ≡ E1 ∗ E[R] as we have seen many times. Let
τ(T, v) be the number of terminal vertices of the rooted tree (T, v), and
consider the mixed bivariate generating function

R(x, y) =
∞∑
n=0

 ∑
(T,v)∈Rn

yτ(T,v)

 xn

n!

Consider this equivalence of classes:

R ≡ E1 ∗ E[R]

RX 
 (E1 ∗ E[R])X

(T, v) ↔ (v, {(S1, w1), ..., (Sk, wk)})
n(T ) = 1 + n(S1) + · · ·+ n(Sk)

τ(T, v) = χ[k = 0] + τ(S1, w1) + · · ·+ τ(Sk, wk).
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We see that the exponential generating function R(x, y) satisfies the
equation

R = x(exp(R) + y − 1).

Sweet! So the number of rooted trees on the vertex-set {1, 2..., n} that
have exactly k terminal vertices is (by LIFT)

n![xnyk]R(x, y)

= (n− 1)![ykun−1](exp(u) + y − 1)n

= (n− 1)![ykun−1]
n∑
i=0

(
n

i

)
yi(exp(u)− 1)n−i

= (n− 1)![un−1]

(
n

k

)
(exp(u)− 1)n−k.

To compare, since the class of set partitions is E[E≥1], for integers
0 ≤ b ≤ a,

S(a, b) = a![qbta] exp(q exp(t)− qt) =
a!

b!
[ta](exp(t)− 1)b

So

S(n− 1, n− k) =
(n− 1)!

(n− k)!
[tn−1](exp(t)− 1)n−k.

The same with u in place of t, from which we continue the thread of
the main computation:

n![xnyk]R(x, y)

= (n− 1)![un−1]
n!

k!(n− k)!
(exp(u)− 1)n−k

=
n!

k!
· (n− 1)!

(n− k)!
[un−1](exp(u)− 1)n−k.

= (n− k)!

(
n

k

)
· S(n− 1, n− k).

That’s what we wanted. Yay! ;-p


