CO 330 Fall 2011 Solutions #6 due Friday, Dec.2.

Exercises: 11.5, 11.7, 11.8, 11.9, 11.12, 11.14(a), 11.15(a).

11.5.

(a) Let \mathcal{D} be the class of derangements – that is, permutations with no fixed points. Let \mathcal{E} be the class of sets, and for integer $k \geq 1$ let \mathcal{C}_k be the class of k-cycles – that is, cyclic permutations on a set of k elements. Then $\mathcal{C}_{\geq 2} = \bigoplus_{k=2}^{\infty} \mathcal{C}_k$ is the class of cyclic permutations with at least 2 elements, and $\mathcal{D} \equiv \mathcal{E}[\mathcal{C}_{\geq 2}]$. Now, the exponential generating function of \mathcal{D} is

$$D(x) = \exp\left(\sum_{k=2}^{\infty} \frac{x^k}{k}\right)$$
$$= \exp\left(\log\left(\frac{1}{1-x}\right) - x\right)$$
$$= \frac{\exp(-x)}{1-x},$$

as claimed.

(b) From part (a) we calculate that

$$\begin{aligned} |\mathcal{D}_n| &= n! [x^n] \frac{\exp(-x)}{1-x} \\ &= n! [x^n] \left(\sum_{i=0}^{\infty} (-1)^i \frac{x^i}{i!} \right) \left(\sum_{j=0}^{\infty} x^j \right) \\ &= n! \sum_{i=0}^n \frac{(-1)^i}{i!}, \end{aligned}$$

as was to be shown.

11.7. By Example 11.19, the class of set partitions is $\mathcal{E}[\mathcal{E}_{\geq 1}]$. For $0 \leq k \leq n$, let S(n, k) be the number of partitions of the set $\{1, 2, ..., n\}$

with k blocks. Then

$$\sum_{n=0}^{\infty} \sum_{k=0}^{n} S(n,k) y^k \frac{x^n}{n!} = \sum_{n=0}^{\infty} \left(\sum_{\pi \in Ptn_n} y^{|\pi|} \right) \frac{x^n}{n!} = \exp(y \exp(x) - y).$$

Therefore, for $0 \le k \le n$,

$$S(n,k) = n![x^{n}y^{k}] \exp(y \exp(x) - y)$$

= $n![x^{n}y^{k}] \sum_{j=0}^{\infty} \frac{y^{j}(\exp(x) - 1)^{j}}{j!}$
= $\frac{n!}{k!}[x^{n}] \sum_{i=0}^{k} {k \choose i} \exp(x)^{i}(-1)^{n-i}$
= $\frac{n!}{k!}[x^{n}] \sum_{i=0}^{k} (-1)^{n-i} {k \choose i} \frac{i^{n}}{n!}$
= $\frac{1}{k!} \sum_{i=0}^{k} (-1)^{n-i} {k \choose i} i^{n},$

as in Exercise 3.11.

11.8. Let S be the class of permutations, C the class of cyclic permutations, and \mathcal{E} the class of sets. Let $c(\sigma, k)$ be the number of cycles of length k in the permutation σ , and consider

$$S(x,y) = \sum_{n=0}^{\infty} \left(\sum_{\sigma \in S_n} y^{c(\sigma,k)} \right) \frac{x^n}{n!}$$

(a) Recall that $S \equiv \mathcal{E}[\mathcal{C}]$, and let \mathcal{C}_k be the class of k-cycles. Thus $S(x, y) = \exp(C(x, y))$ in which

$$C(x,y) = \sum_{j=1}^{\infty} y^{\chi[j=k]} \frac{x^j}{j} = \log\left(\frac{1}{1-x}\right) + \frac{x^k}{k}(y-1).$$

(Here, as usual, for a proposition P we have $\chi[P] = 1$ if P is true, and $\chi[P] = 0$ if P is false.) That is,

$$S(x,y) = \exp\left(\log\left(\frac{1}{1-x}\right) + \frac{x^k}{k}(y-1)\right) = \frac{\exp(x^k(y-1)/k)}{1-x}.$$

 $\mathbf{2}$

(b) From part (a) the average number of k-cycles among all n! permutations of the set $\{1, 2, ..., n\}$ is

$$\frac{1}{n!}n![x^n] \frac{\partial}{\partial y} \frac{\exp(x^k(y-1)/k)}{1-x} \Big|_{y=1}$$

$$= [x^n] \frac{1}{1-x} \exp(x^k(y-1)/k)x^k/k \Big|_{y=1}$$

$$= \frac{1}{k}[x^n] \frac{x^k}{1-x}$$

$$= \begin{cases} 1/k & \text{if } 1 \le k \le n, \\ 0 & \text{if } n < k, \end{cases}$$

as was to be shown.

11.9. Let \mathcal{Y} be the class of labelled (unrooted) trees in which each vertex has degree 1 or 3. Let \mathcal{Q} be the class of labelled *rooted* trees in which each vertex has either 0 or 2 children. For each $k \in \mathbb{N}$, let \mathcal{E}_k be the class of k-sets. Then

$$\mathcal{Y}^{\bullet} \equiv \mathcal{E}_1 * (\mathcal{Q} \oplus \mathcal{E}_3[\mathcal{Q}])$$

and

$$Q \equiv \mathcal{E}_1 * (\mathcal{E}_0 \oplus \mathcal{E}_2[Q]) \,,$$

as is easily seen by drawing a suitably general picture of a tree in \mathcal{Y} . The exponential generating functions of these classes satisfy the equations

$$Y^{\bullet} = x(Q + Q^3/6)$$

and

$$Q = x(1 + Q^2/2),$$

respectively. Therefore (applying LIFT) we see that for $n \ge 2$, the number of trees in \mathcal{Y} on the vertex-set $\{1, 2, ..., n\}$ is

$$\begin{aligned} |\mathcal{Y}_n| &= \frac{1}{n} |\mathcal{Y}_n^{\bullet}| = \frac{1}{n} n! [x^n] Y^{\bullet}(x) \\ &= (n-1)! [x^n] x (Q+Q^3/6). \end{aligned}$$

We use LIFT with $F(u) = u + u^3/6$ and $G(u) = 1 + u^2/2$. Notice that $F'(u) = 1 + u^2/2 = G(u)$, which is nice. Applying LIFT, we have

$$\begin{aligned} |\mathcal{Y}_n| &= (n-1)! [x^{n-1}] F(Q) \\ &= (n-2)! [u^{n-2}] (1+u^2/2)^n \\ &= (n-2)! [u^{n-2}] \sum_{k=0}^n \binom{n}{k} \frac{u^{2k}}{2^k} \\ &= \begin{cases} 0 & \text{if } n \text{ is odd,} \\ \frac{(2k)!}{2^k} \binom{2k+2}{k} & \text{if } n = 2k+2 \end{cases} \end{aligned}$$

This is what was to be shown.

11.12. Let \mathcal{K} be the class of triangle-trees, and consider a rooted triangle-tree $(T, v) \in \mathcal{K}^{\bullet}_X$ for some finite set X. Deleting $v, T \smallsetminus v$ decomposes naturally as a set of connected components, each of which is naturally an unordered pair of rooted triangle-trees in \mathcal{K}^{\bullet} . That is,

$$\mathcal{K}^{\bullet} \equiv \mathcal{E}_1 * \mathcal{E}[\mathcal{E}_2[\mathcal{K}^{\bullet}]].$$

So for the exponential generating functions we have the equation

 $K^{\bullet} = x \left(\exp((K^{\bullet})^2/2) \right).$

A straightforward application of LIFT completes the calculation:

$$\begin{aligned} |\mathcal{K}_n| &= \frac{1}{n} |\mathcal{K}_n^{\bullet}| = (n-1)! [x^n] K^{\bullet}(x) \\ &= \frac{(n-1)!}{n} [u^{n-1}] \exp(u^2/2)^n \\ &= \frac{(n-1)!}{n} [u^{n-1}] \sum_{j=0}^{\infty} \frac{n^j u^{2j}}{j! 2^j} \\ &= \begin{cases} 0 & \text{if } n \text{ is even,} \\ \frac{(2j)! (2j+1)^{j-1}}{j! 2^j} & \text{if } n = 2j+1 \ge 1. \end{cases} \end{aligned}$$

There it is!

11.14(a). Let Ω be the class of oriented cacti, and consider a rooted oriented cactus $(Q, v) \in \Omega^{\bullet}_X$ for some finite set X. Deleting the root vertex $v \in X$ from Q we obtain $Q \setminus v$. Every connected component of $Q \setminus v$ is a nonempty totally ordered sequence of structures in Ω^{\bullet} . That is,

$$Q^{\bullet} \equiv \mathcal{E}_1 * \mathcal{E}[Q^{\bullet} * (Q^{\bullet})^*].$$

4

Hence, for the exponential generating function we have the equation

$$Q^{\bullet} = x \, \exp(Q^{\bullet}/(1-Q^{\bullet})).$$

Now we apply LIFT:

$$\begin{aligned} |\Omega_n| &= \frac{1}{n} |\Omega_n^{\bullet}| = (n-1)! [x^n] Q^{\bullet}(x) \\ &= \frac{(n-1)!}{n} [u^{n-1}] \exp(u/(1-u))^n \\ &= \frac{(n-1)!}{n} [u^{n-1}] \sum_{j=0}^{\infty} \frac{n^j u^j}{j! (1-u)^j} \\ &= \frac{(n-1)!}{n} \sum_{j=0}^{n-1} \frac{n^j}{j!} [u^{n-1-j}] \sum_{i=0}^{\infty} \binom{i+j-1}{j-1} u^i \\ &= (n-1)! \sum_{j=0}^{n-1} \frac{n^{j-1}}{j!} \binom{(n-1-j)+j-1}{j-1} \\ &= (n-1)! \sum_{j=0}^{n-1} \frac{n^{j-1}}{j!} \binom{n-2}{j-1} \\ &= (n-1)! \sum_{j=0}^{n-1} \frac{n^{j-1}}{j!} \binom{n-2}{n-1-j}. \end{aligned}$$

Done! ;-D

11.15(a). Let \mathfrak{T} be the class of trees, and let $\mathfrak{R} = \mathfrak{T}^{\bullet}$ be the class of rooted trees. Then $\mathfrak{R} \equiv \mathcal{E}_1 * \mathcal{E}[\mathfrak{R}]$ as we have seen many times. Let $\tau(T, v)$ be the number of terminal vertices of the rooted tree (T, v), and consider the mixed bivariate generating function

$$R(x,y) = \sum_{n=0}^{\infty} \left(\sum_{(T,v) \in \mathcal{R}_n} y^{\tau(T,v)} \right) \frac{x^n}{n!}$$

Consider this equivalence of classes:

$$\mathcal{R} \equiv \mathcal{E}_1 * \mathcal{E}[\mathcal{R}]$$

$$\mathcal{R}_X \rightleftharpoons (\mathcal{E}_1 * \mathcal{E}[R])_X$$

$$(T, v) \leftrightarrow (v, \{(S_1, w_1), ..., (S_k, w_k)\})$$

$$n(T) = 1 + n(S_1) + \dots + n(S_k)$$

$$\tau(T, v) = \chi[k = 0] + \tau(S_1, w_1) + \dots + \tau(S_k, w_k).$$

We see that the exponential generating function R(x, y) satisfies the equation

$$R = x(\exp(R) + y - 1).$$

Sweet! So the number of rooted trees on the vertex-set $\{1, 2..., n\}$ that have exactly k terminal vertices is (by LIFT)

$$n![x^{n}y^{k}]R(x,y) = (n-1)![y^{k}u^{n-1}](\exp(u) + y - 1)^{n}$$

= $(n-1)![y^{k}u^{n-1}]\sum_{i=0}^{n} \binom{n}{i}y^{i}(\exp(u) - 1)^{n-i}$
= $(n-1)![u^{n-1}]\binom{n}{k}(\exp(u) - 1)^{n-k}.$

To compare, since the class of set partitions is $\mathcal{E}[\mathcal{E}_{\geq 1}],$ for integers $0\leq b\leq a,$

$$S(a,b) = a![q^{b}t^{a}]\exp(q\exp(t) - qt) = \frac{a!}{b!}[t^{a}](\exp(t) - 1)^{b}$$

 So

$$S(n-1, n-k) = \frac{(n-1)!}{(n-k)!} [t^{n-1}] (\exp(t) - 1)^{n-k}.$$

The same with u in place of t, from which we continue the thread of the main computation:

$$n![x^{n}y^{k}]R(x,y)$$

$$= (n-1)![u^{n-1}]\frac{n!}{k!(n-k)!}(\exp(u)-1)^{n-k}$$

$$= \frac{n!}{k!} \cdot \frac{(n-1)!}{(n-k)!}[u^{n-1}](\exp(u)-1)^{n-k}.$$

$$= (n-k)!\binom{n}{k} \cdot S(n-1,n-k).$$

That's what we wanted. Yay! ;-p