- 1. Let C be a binary (n,k)-cyclic code with generator polynomial g(x) = (x+1)p(x), where p(x) does not divide $x^t 1$ for any $t, 1 \le t \le n 1$. An error pattern of the form $e(x) = x^i + x^{i+1}$ $(0 \le i \le n 1)$ is called a *double-adjacent* error pattern.
 - (a) Prove that no two double-adjacent error patterns can be in the same coset of a standard array for C.
 - (b) Prove that C corrects all single errors and all double-adjacent errors.
 - (c) Construct a generator polynomial for a binary (15, 10)-cyclic code which corrects all single errors and all double-adjacent error patterns.
- 2. Consider $GF(3^3)$ generated by $f(x) = 1 x + x^3$ over GF(3).
 - (a) Prove that $\beta = x^2$ has order 13 in $GF(3^3)$.
 - (b) Determine the cyclotomic cosets of 3 modulo 13.
 - (c) Use (a) and (b) to factor $y^{13} 1$ into irreducible monic polynomials over GF(3).
- 3. Consider the finite field $GF(2^5) = \mathbb{Z}_2[x]/(x^5 + x^2 + 1)$. Then $\alpha = x$ is a generator of $GF(2^5)$. We have the following minimal polynomials:

$$\begin{split} m_0(y) &= y & m_{\alpha^5}(y) = 1 + y + y^2 + y^4 + y^5 \\ m_1(y) &= 1 + y & m_{\alpha^7}(y) = 1 + y + y^2 + y^3 + y^5 \\ m_{\alpha}(y) &= 1 + y^2 + y^5 & m_{\alpha^{11}}(y) = 1 + y + y^3 + y^4 + y^5 \\ m_{\alpha^3}(y) &= 1 + y^2 + y^3 + y^4 + y^5 & m_{\alpha^{15}}(y) = 1 + y^3 + y^5. \end{split}$$

Construct a generator polynomial for a binary (31, 11)-cyclic code which has designed distance 11.

4. Recall that C_{15} is a (15,7)-BCH code over GF(2) with designed distance 5 generated by $g(x) = m_{\beta}(x)m_{\beta^3}(x)$, where $\beta = y$ is an element of order 15 in $GF(2^4) = \mathbb{Z}_2[y]/(y^4 + y + 1)$. Decode the received word $r = (00101\ 11000\ 11101)$ using C_{15} .

Solutions will be available on the course web site on April 2.