Duration: 2 hours	Aids: None	Total marks: 43
NAME and ID:		
1. [6 marks] Let C be an (n, k) -code ov	ver $F = GF(q)$.	

- (a) Define the dual code C^{\perp} of C. [2 marks]
- (b) Give the definition of a *parity-check matrix* for C. [2 marks]
- (c) Can C have more than one parity-check matrix? (Explain) [2 marks]

- 2. [10 marks] Let \mathbb{Z}_7 be the finite field with 7 elements.
 - (a) Prove that the polynomial $x^2 + 4$ is irreducible in $\mathbb{Z}_7[x]$. [2 marks]
 - (b) How many elements does the field $F = \mathbb{Z}_7[x]/(x^2 + 4)$ have? [2 marks]
 - (c) Write down eight distinct elements of F. [2 marks]
 - (d) Calculate $(x+1)^7$ in F. [2 marks]
 - (e) Does F have an element of order 7? Does F have an element of order 8? (Explain) [2 marks]

- 3. [5 marks] Let C be an [n, M]-code of distance d over F = GF(q), with $e = \lfloor \frac{d-1}{2} \rfloor$.
 - (a) Define what it means for C to be a *perfect code*. [2 marks]
 - (b) Prove that the *n*-fold repetition code $C = \{\underbrace{000\ldots0}_{n \text{ times}}, \underbrace{111\ldots1}_{n \text{ times}}\} \subset V_n(\mathbb{Z}_2)$ is a perfect binary code with distance d = n if d is odd. [3 marks]

4. [8 marks] Consider the single-error correcting linear (n, k) code C over \mathbb{Z}_3 with parity-check matrix

$$H = \begin{bmatrix} 2 & 1 & 0 & 2 & 1 & 0 & 0 & 0 \\ 2 & 2 & 0 & 2 & 0 & 1 & 0 & 0 \\ 2 & 2 & 2 & 0 & 0 & 0 & 1 & 0 \\ 2 & 2 & 1 & 2 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- (a) Determine n and k of C. [2 marks]
- (b) Determine the distance d of C. [3 marks]
- (c) Correct the received vector r = (10220011) to the nearest codeword, if possible. [3 marks]

5. (4 marks) Let C be an (n, k)-code over F with distance d, and let $e = \lfloor (d-1)/2 \rfloor$. Let $x \in V_n(F)$ be a vector of weight $w(x) \leq e$. Prove that x is the unique vector of minimum weight in its coset of C.

6. [10 marks] Let C be the linear code over GF(3) with parity-check matrix

	$\overline{2}$	0	2	1	1	2	1	0	0	0	0]
	2	2	0	2	1	1	0	1	0	0	0
H =	2	1	2	0	2	1	0	0	1	0	0
	2	1	1	2	0	2	0	0	0	1	0
H =	2	2	1	1	2	0	0	0	0	0	1

The following is a partial list of coset leaders and their corresponding syndromes under the matrix H.

Coset Leader	Syndrome
0000000000000000	00000
10000000000	22222
01000000000	?
00100000000	20211
00010000000	?
00001000000	11202
00000100000	21120
00000010000	10000
0000001000	01000
0000000100	00100
0000000010	00010
00000000001	00001

- (a) Fill in the missing entries in the table. [2 marks]
- (b) Suppose the vector r = (01220000100) is received. Correct r to the nearest codeword. [4 marks]
- (c) Suppose the vector r = (00012100000) is received. Correct r to the nearest codeword. [4 marks]

EXTRA PAGE-1.

EXTRA PAGE-2.