- 1. (a) The dual code of C consists of the vectors $x \in V_n(F)$ that satisfy $x \cdot y = 0$ for all $y \in C$.
	- (b) A parity-check matrix for C is an $(n k) \times n$ matrix whose rows form a basis for C^{\perp} .
	- (c) Yes, C can have more than one parity-check matrix. For example if H is a parity-check matrix, then the matrix obtained by exchanging two rows of H is also a parity-check matrix for C .
- 2. (a) Since $(x^2 + 4)$ has degree 2, it is irreducible if and only if it has a linear factor. And, $(x^2 + 4)$ has a linear factor if and only if $a^2 + 4 = 0$ for some $a = 0, 1, 2, 3, 4, 5, 6$. However, $0^2 + 4 = 4$, $1^2 + 4 = 5$, $2^2 + 4 = 1$, $3^2 + 4 = 6$, $4^2 + 4 = 6$, $5^2 + 4 = 1$, and $6^2 + 4 = 5$ in \mathbb{Z}_7 . Hence, $(x^2 + 4)$ is irreducible.
	- (b) $7^2 = 49$
	- (c) $0, 1, \ldots, 6, x$.
	- (d) $(x+1)^7 = x^7 + 1 = (x^2)^3x + 1 = (-4)^3x + 1 = 6x + 1.$
	- (e) The order of an element in F must divide $|F^*| = 48$. Hence, F cannot have an element of order 7. If $g \in F$ is a primitive element then $h = g^6$ has order 8.
- 3. (a) C is a perfect code if each word $x \in V_n(F)$ is in the sphere of radius e about some codeword $c \in C$. Equivalently, C is perfect if and only if

$$
M\sum_{i=0}^e\binom{n}{i}(q-1)^i=q^n
$$

- (b) Let c_0 (c_1) be the all-zero (all-one) codeword in C. It is clear that $d(C) = d(c_1, c_2) = n$. Now, let $x \in V_n$ and $w(x) = k_1$. Then $d(c_0, x) = k_1$ and $d(c_1, x) = n - k_1$. If d is odd then we may set $n = d = 2k + 1$ and so $e = k$. Finally, if $k_1 \leq k$ then $d(c_0, x) = k_1 \leq k = e$ and x is in the sphere of radius e about c_0 . Otherwise, $k + 1 \leq k_1 \leq n$ and $d(c_1, x) = n - k_1 \leq$ $(2k+1) - (k+1) = k = e$ and x is in the sphere of radius e about c_1 . Hence, C is a perfect code.
- 4. (a) $n = 8, k = 4.$
	- (b) Since all columns of H are nonzero, we conclude the distance is at least 2. Since no two columns of H are multiples of each other, we conclude the distance is at least 3. Since the first, second, and fifth columns of H form a linearly dependent set, we conclude the distance of H is exactly 3.
	- (c) We compute $Hr^T = (0010)$. The resulting vector equals the seventh column of H. Hence, the error vector is $e = (00000010)$, and the corrected codeword is $r - e = (10220001)$.
- 5. Suppose that y is in the same coset of C as x, with $y \neq x$ and $w(y) \leq w(x) \leq e$. Since x and y are in the same coset of C, we have $x - y \in C$ and also $x - y \neq 0$. But

$$
w(x - y) = w(x + (-y))
$$

\n
$$
\leq w(x) + w(-y)
$$

\n
$$
= w(x) + w(y)
$$

\n
$$
\leq e + e
$$

\n
$$
\leq d - 1.
$$

This contradicts the fact that $d(C) = d$. Thus there does not exist such a vector y, so x is indeed the unique vector of minimum weight in its coset.

- 6. (a) The first entry is 02112 and the second entry is 12021.
	- (b) We compute the syndrome $Hr^T = (00010)$. The corresponding coset leader in the table is (00000000010). Hence, $e = (00000000010)$ and the corrected codeword is $r - e =$ (01220000120).
	- (c) We compute the syndrome $Hr^T = (22212)$ which is the sum of the first column and twice the tenth column of H. Hence, the syndrome of $e = (10000000020)$ is also (22212). Note that e can be chosen as a coset leader because $w(e) = 2$, and the corrected codeword is $r - e = (20012100010).$