1. (a) Suppose that among the n coordinate positions, there are a_{11} positions in which both x and y have 1s, there are a_{10} positions in which x has a 1 and y has a 0, and a_{01} positions in which x has a 0 and y has a 1. Then

$$
d(x,y) = a_{10} + a_{01} = (a_{11} + a_{10}) + (a_{11} + a_{01}) - 2a_{11} = wt(x) + wt(y) - 2I(x,y).
$$

(b) Suppose that C is a binary $[n, M]$ -code having distance $d = 2t + 1$. For each codeword c in C, add an $(n + 1)$ st component as follows: if c has even weight the component is 0; otherwise, if c has odd weight, the component is 1. Note that the new words all have even weight. Hence the new words form a binary $[n+1, M]$ -code C'. We claim that $d(C') = 2t + 2$. To see this, let c_1 and c_2 be any two codewords in C whose distance apart is exactly $2t + 1$; such a pair of codewords must exist since the distance of C is $2t + 1$. But

$$
d(c_1, c_2) = \text{wt}(c_1) + \text{wt}(c_2) - 2(\# \text{ of common 1's}),
$$

which implies that the weights of c_1 and c_2 do not have the same parity. This means that the new components added to c_1 and c_2 will have different values. Hence the modifications of c_1 and c_2 in C' are distance $2t + 2$ apart. Also, the distance between two words in C' cannot be any less than the distance of the corresponding words in C . It follows that the distance of C' is $2t + 2$.

Suppose now that C' is a binary $[n+1, M]$ -code having distance $d = 2t + 2$. Let c'_1 and c'_2 be two codewords in C' whose distance apart is exactly $2t + 2$. Select any component where c_1' and c_2' differ, and consider the words obtained by deleting that component from all codewords in C' . These new words must be pairwise distinct, so they form an $[n, M]$ -code C. We claim that $d(C) = 2t + 1$. To see this, notice that the distance between the modifications of c'_1 and c'_2 is $2t + 1$. Since the distance between any two new words in C can be at most 1 less than the distance between the corresponding original words, it follows that $d(C) = 2t + 1$.

2. (a)
$$
d(C) = 2
$$
.

- (b) Since $d(r, c_1) = 2$, $d(r, c_2) = 3$ and $d(r, c_3) = 3$, IMLD decodes r to c_1 .
- (c) $P(c_1|r) = p^2(1-p)^2P(c_1)/P(r) = 81/(10^5P(r)).$ $P(c_2|r) = p^3(1-p)P(c_2)/P(r) = 18/(10^5 P(r)).$ $P(c_3|r) = p^3(1-p)P(c_3)/P(r) = 63/(10^5 P(r)).$ Hence MED decodes r to c_1 .
- (d) As in (a), IMLD decodes r to c_1 . (IMLD does not take into account the source message probabilities $P(c_i)$, nor the symbol error probability p.)
- (e) $P(c_1|r) = 576/(10^5 P(r))$. $P(c_2|r) = 768/(10^5 P(r))$. $P(c_3|r) = 2688/(10^5 P(r))$. Hence MED decodes r to c_3 .
- 3. (a) Let $x, y, z \in Aⁿ$. One way to transform x to z is to first transform x to y by changing $d(x, y)$ symbols of x, and then transforming y to z by changing $d(y, z)$ symbols of y: the total number of symbols changed is $d(x, y) + d(y, z)$. Since $d(x, z)$ is the minimum number of symbols of x that need to be changed in order to transform x to z, it follows that $d(x, z) \leq d(x, y) + d(y, z)$.

(b) Suppose that $c \in C$ is sent. Suppose first that t or fewer errors are introduced, and r is received. Then $d(c, r) \leq t$. Let c_1 be any codeword different from c. Then

$$
d(c_1, r) \geq d(c_1, c) - d(c, r)
$$
 by the triangle inequality
\n
$$
\geq (2t + 2) - t
$$
\n
$$
= t + 2
$$
\n
$$
> t.
$$

Hence c is the unique codeword such that $d(c, r) \leq t$, so the decoder properly decodes r to c. Suppose next that $t + 1$ errors are introduced, and r is received. Then $d(c, r) = t + 1$. Let c_1 be any codeword different from c. Then

$$
d(c_1, r) \geq d(c_1, c) - d(c, r)
$$

\n
$$
\geq (2t + 2) - (t + 1)
$$

\n
$$
= t + 1
$$

\n
$$
> t.
$$

Hence there is no codeword within distance t of r , so the decoder properly rejects r .

- 4. (a) Let x^i denote the i^{th} coordinate of a word x. Let $c_1, c_2 \in C$. If $c_1^i = c_2^i$, then clearly $(c_1 + x)^i =$ $(c_2 + x)^i$. Similarly, if $c_1^i \neq c_2^i$, then $(c_1 + x)^i \neq (c_2 + x)^i$. Hence $d(c_1, c_2) = d(c_1 + x, c_2 + x)$. Hence $d(C) = d(C + x)$.
	- (b) $C = \{(00000000), (111111000), (00011111), (11100111)\}.$
	- (c) There is no binary [7, 3]-code with distance 5. Proof: Suppose $C = \{c_1, c_2, c_3\}$ is such a code. By (a), we can assume that $c_1 = 0$. Thus, each of c_2 and c_3 must have at least 5 1's. But then c_2 and c_3 can differ in at most 4 positions, which contradicts the assumption that $d(C) = 5$.