- 1. Without loss of generality, let the alphabet be $A = \mathbb{Z}_q$ (the set of integers modulo q).
 - (a) Since codewords are *n*-tuples over \mathbb{Z}_q , and there are q^n *n*-tuples in total, the number of codewords in any code of length n over \mathbb{Z}_q is at most q^n . Hence $T_q(n,d) \leq q^n$.
 - (b) The code consisting of all the *n*-tuples over \mathbb{Z}_q has distance d = 1; hence $T_q(n, 1) \ge q^n$. By (a), we have $T_q(n, 1) \le q^n$. Thus $T_q(n, 1) = q^n$.
 - (c) The code consisting of the q codewords $(0, 0, 0, \dots, 0)$, $(1, 1, 1, \dots, 1)$, $(2, 2, 2, \dots, 2)$, $\dots (q 1, q 1, q 1, \dots, q 1)$ has distance n, so $T_q(n, n) \ge q$. Suppose now that $c_1, c_2, \dots c_{q+1}$ are pairwise distinct words of length n over \mathbb{Z}_q . Consider the symbols in the first coordinate position in each of these words. Since there are q symbols in \mathbb{Z}_q , at least two of the words must have the same symbol in the first coordinate position; without loss of generality, suppose that c_1 and c_2 have the same symbol in the first coordinate position. Then $d(c_1, c_2) \le n - 1$. This shows that any code over \mathbb{Z}_q having more than q codewords has distance at most n - 1. Hence $T_q(n, n) = q$.

2. (a)
$$q = 5^5 = 3125$$
.

- (b) The polynomials in $\mathbb{Z}_5[x]$ of degree less than 5.
- (c) 5.
- (d) $2x^4 + 4x^3 + x + 4$.
- (e) Consider a as a polynomial a(x). We need to find a solution to the polynomial Diophantine equation f(x)s(x) + a(x)t(x) = 1. Using the Extended Euclidean Algorithm, we get a table of the form

s(x)	t(x)	f(x)s(x) + a(x)t(x)
1	0	$x^5 + 4x + 2$
0	1	$2x^2 + 3$
1	$2x^3 + 2x$	2
$4x^2 + 1$	$3x^5 + 2x + 1$	0

Multiplying the second-last row by 3 gives the solution s(x) = 3 and $t(x) = x^3 + x$, from which we see that $a^{-1} = t = x^3 + x$.

(f) By the Freshman's dream, $(x+4)^5 = (x^5+4) = x+2$. Since 6249 = q + (q-1), it follows that

$$(4x^3 + 2x^2 + x + 4)^{6249} = (4x^3 + 2x^2 + x + 4)^{3125}(4x^3 + 2x^2 + x + 4)^{3124} = (4x^3 + 2x^2 + x + 4)(1) = 4x^3 + 2x^2 + x + 4(1) = 4x^3 + 2x^3 + 2x^3$$

Hence the answer is $(x + 2)(4x^3 + 2x^2 + x + 4) = 4x^4 + x + 3$.

3. (a) Long division of f(x) by (x - a) yields polynomials $l(x), r(x) \in F[x]$ such that

$$f(x) = l(x)(x-a) + r(x)$$
, where $\deg(r) < 1$, (1)

i.e., r(x) is a constant polynomial, say r(x) = c. Now, substituting x = a in (1) yields f(a) = c. Hence $f(a) = 0 \Leftrightarrow c = 0 \Leftrightarrow (x - a) | f(x)$.

- (b) Degree 1: x, x + 1. Degree 2: $x^2 + x + 1$. Degree 3: $x^3 + x + 1, x^3 + x^2 + 1$. Degree 4: $x^4 + x + 1, x^4 + x^3 + 1, x^4 + x^3 + x^2 + x + 1$.
- 4. (a) Since f has degree 3, it is irreducible if and only if it has a linear factor. From part 2a), it has a linear factor if and only if f(a) = 0 for some a = 0, 1, 2. But f(0) = 2, f(1) = 2, and f(2) = 2. Hence, f is irreducible.
 - (b) A primitive element in $GF(3^3)$ has order 26. We are given that x has order 13. Also, -1 = 2 has order 2. Since 2 and 13 are coprime, 2x must have order $2 \cdot 13 = 26$ and hence is primitive.

(с)
· · ·		/

Order	# of Elements
1	1
2	1
13	12
26	12

- 5. (a) Assume that $\alpha^i = \alpha^j$ for $0 \le i < j \le t 1$. Then $\alpha^{j-i} = 1$. But $0 < j i \le t 1$, which contradicts $\operatorname{ord}(\alpha) = t$. Hence $\alpha^0, \alpha^1, \ldots, \alpha^{t-1}$ are pairwise distinct.
 - (b) By the division algorithm, we can write s = qt + r where $q, r \in \mathbb{Z}$ and $0 \le r < t$. We have

$$\alpha^s = \alpha^{qt+r} = (\alpha^t)^q \alpha^r = 1^q \alpha^r = \alpha^r.$$

Now, if $\alpha^s = 1$, then $\alpha^r = 1$. If $r \neq 0$ then $\alpha^r = 1$ and 0 < r < t would contradict the definition of t. Thus r = 0 and so $t \mid s$.

Conversely, suppose that $t \mid s$. Then r = 0 so $\alpha^s = \alpha^0 = 1$.

(c) Let $t = \operatorname{ord}(\alpha)$ and $s = \operatorname{ord}(\alpha^{-1})$. Now,

$$\alpha^s = (\alpha^{-1})^{-s} = \frac{1}{(\alpha^{-1})^s} = \frac{1}{1} = 1.$$

Hence $t \mid s$. Similarly, $(\alpha^{-1})^t = \alpha^{-t} = 1/\alpha^t = 1/1 = 1$; hence $s \mid t$. We conclude that t = s.