
C&O 331: Assignment #2 solutions

1. Without loss of generality, let the alphabet be A = Zq (the set of integers modulo q).

(a) Since codewords are n-tuples over Zq, and there are qn n-tuples in total, the number of code-
words in any code of length n over Zq is at most qn. Hence Tq(n, d) ≤ qn.

(b) The code consisting of all the n-tuples over Zq has distance d = 1; hence Tq(n, 1) ≥ qn. By
(a), we have Tq(n, 1) ≤ qn. Thus Tq(n, 1) = qn.

(c) The code consisting of the q codewords (0, 0, 0, . . . , 0), (1, 1, 1, . . . , 1), (2, 2, 2, . . . , 2), . . . (q −
1, q − 1, q − 1, . . . , q − 1) has distance n, so Tq(n, n) ≥ q.
Suppose now that c1, c2, . . . cq+1 are pairwise distinct words of length n over Zq. Consider the
symbols in the first coordinate position in each of these words. Since there are q symbols in Zq,
at least two of the words must have the same symbol in the first coordinate position; without
loss of generality, suppose that c1 and c2 have the same symbol in the first coordinate position.
Then d(c1, c2) ≤ n− 1. This shows that any code over Zq having more than q codewords has
distance at most n− 1.
Hence Tq(n, n) = q.

2. (a) q = 55 = 3125.

(b) The polynomials in Z5[x] of degree less than 5.

(c) 5.

(d) 2x4 + 4x3 + x+ 4.

(e) Consider a as a polynomial a(x). We need to find a solution to the polynomial Diophantine
equation f(x)s(x) + a(x)t(x) = 1. Using the Extended Euclidean Algorithm, we get a table of
the form

s(x) t(x) f(x)s(x) + a(x)t(x)
1 0 x5 + 4x+ 2
0 1 2x2 + 3
1 2x3 + 2x 2

4x2 + 1 3x5 + 2x+ 1 0

Multiplying the second-last row by 3 gives the solution s(x) = 3 and t(x) = x3 +x, from which
we see that a−1 = t = x3 + x.

(f) By the Freshman’s dream, (x+ 4)5 = (x5 + 4) = x+ 2. Since 6249 = q+ (q−1), it follows that

(4x3+2x2+x+4)6249 = (4x3+2x2+x+4)3125(4x3+2x2+x+4)3124 = (4x3+2x2+x+4)(1) = 4x3+2x2+x+4

Hence the answer is (x+ 2)(4x3 + 2x2 + x+ 4) = 4x4 + x+ 3.

3. (a) Long division of f(x) by (x− a) yields polynomials l(x), r(x) ∈ F [x] such that

f(x) = l(x)(x− a) + r(x), where deg(r) < 1, (1)

i.e., r(x) is a constant polynomial, say r(x) = c. Now, substituting x = a in (1) yields f(a) = c.
Hence f(a) = 0⇔ c = 0⇔ (x− a)|f(x).



(b) Degree 1: x, x+ 1.
Degree 2: x2 + x+ 1.
Degree 3: x3 + x+ 1, x3 + x2 + 1.
Degree 4: x4 + x+ 1, x4 + x3 + 1, x4 + x3 + x2 + x+ 1.

4. (a) Since f has degree 3, it is irreducible if and only if it has a linear factor. From part 2a), it
has a linear factor if and only if f(a) = 0 for some a = 0, 1, 2. But f(0) = 2, f(1) = 2, and
f(2) = 2. Hence, f is irreducible.

(b) A primitive element in GF (33) has order 26. We are given that x has order 13. Also, −1 = 2
has order 2. Since 2 and 13 are coprime, 2x must have order 2 ·13 = 26 and hence is primitive.

(c)

Order # of Elements
1 1
2 1
13 12
26 12

5. (a) Assume that αi = αj for 0 ≤ i < j ≤ t − 1. Then αj−i = 1. But 0 < j − i ≤ t − 1, which
contradicts ord(α) = t. Hence α0, α1, . . . , αt−1 are pairwise distinct.

(b) By the division algorithm, we can write s = qt+ r where q, r ∈ Z and 0 ≤ r < t. We have

αs = αqt+r = (αt)qαr = 1qαr = αr.

Now, if αs = 1, then αr = 1. If r 6= 0 then αr = 1 and 0 < r < t would contradict the
definition of t. Thus r = 0 and so t | s.
Conversely, suppose that t | s. Then r = 0 so αs = α0 = 1.

(c) Let t = ord(α) and s = ord(α−1). Now,

αs = (α−1)−s =
1

(α−1)s
=

1
1

= 1.

Hence t | s. Similarly, (α−1)t = α−t = 1/αt = 1/1 = 1; hence s | t. We conclude that t = s.


