C&O 331: Assignment $#3$ solutions

1. (a) Suppose that C is a perfect code of length $n = 27$ and distance $d = 3$ over $GF(27)$. Suppose that C has M codewords. Then the sphere packing bound says that

$$
M(1 + n(q - 1)) = q^n,
$$

so $M = \frac{q^n}{1 + n(q-1)}$. But the right hand side is not an integer when $q = 27$ and $n = 27$. Hence such a codes C does not exist.

- (b) The Hamming code of order 2 over $GF(27)$ has length $n = 28$ and distance $d = 3$ (and dimension $k = 26$).
- (c) Let C be a code of even distance $d = 2t$. Then $e = |(d-1)/2| = t 1$. Let $c \in C$ and let r be a vector such that $d(c, r) = t$. Note that r is not in the sphere of radius e centered at c. Now, if r were in the sphere of radius e centered at some codeword $c' \neq c$, then we would have

$$
d(c, c') \leq d(c, r) + d(r, c') \leq t + e < d,
$$

which is impossible since the distance of C is d. Hence r is not contained in any of the radiusspheres centered at codewords, and so C is not a perfect code. It follows that a perfect code must have odd distance.

- 2. (a) A parity-check matrix for a binary $(n, 74)$ -single error-correcting code is a binary $(n 74) \times n$ matrix of rank $n - 74$ whose columns are nonzero and pairwise distinct. Since the number of nonzero binary vectors of length $n - 74$ is $2^{n-74} - 1$, such a matrix exists if and only if $n \leq (2^{n-74} - 1)$. By trial and error, we find that the smallest value of n which satisfies this inequality is $n = 81$.
	- (b) Deleting the last $d-1$ symbols from each codeword leaves M words, each of length $n-d+1$. These words must be pairwise distinct, since $d(C) = d$. There are q^{n-d+1} words of length $n-d+1$ over an alphabet of size q. Hence $M \leq q^{n-d+1}$.
- 3. (a) We have $n = 5, k = 3,$ and $M = 64$.
	- (b) One possible parity check matrix is

$$
\left[\begin{array}{cccc}1&0&1&1&x\\0&1&1&x&1\end{array}\right]
$$

(c) The answers for this part may depend on the choice of parity check matrix in part (b). We give the answers for our choice of parity check matrix. Let $r_1 = (0, x, 1, x + 1, x)$. Since $Hr_1^T = (1, 0)$ is equal to the first column of H, the error vector is $e = (1, 0, 0, 0, 0)$ and the corrected codeword is $r_1 - e = (1, x, 1, x + 1, x)$. Let $r_2 = (1, x+1, x, 0, 0)$. Since $Hr_2^T = (x+1, 1)$ is equal to $x+1$ times the fourth column of H ,

the error vector is
$$
e = (0, 0, 0, x+1, 0)
$$
 and the corrected codeword is $r_2 - e = (1, x+1, x, x+1, 0)$.

4. The given matrix H is row equivalent to

$$
H' = \left[\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right] \left[\begin{array}{rrrrr} 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \end{array} \right]
$$

 H' is also a parity check matrix for C .

(a) $n = 10$.

Since H' has rank 4, we have $n - k = 4$, and hence $k = 6$.

Since the columns of H' are non-zero and distinct, $d(C) \geq 3$. Now, the sum of columns 1 and 2 of H' equals column 5 of H'. Hence $d(C) \not\geq 4$. It follows that $d(C) = 3$.

(b)

$$
G = \left[\begin{array}{cccc|cccc} 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \end{array}\right]
$$

(c) There are $2^{n-k} = 2^4 = 16$ cosets. Note that every vector of weight $\leq \lfloor \frac{d-1}{2} \rfloor = 1$ must be a coset leader. Here is one (there are many others) 1-1 correspondence between syndromes and coset leaders.

- (d) i. The syndrome of r_1 is $s_1 = Hr_1^T = (0001)^T$. Hence $e = (0001000000)$ and r_1 is corrected to $c_1 = (11111110000)$.
	- ii. The syndrome of r_2 is $s_2 = H r_2^T = (1110)^T$. Hence $e = (000000001)$ and r_2 is corrected to $c_2 = (1011110011)$.