- 1. (a) $s_2 = [B|I_{12}]r_1^T = (1001\ 0001\ 0000)^T$. Since $w(s_2) \leq 3$, the error vector is $e_1 = (0, s_2^T)$. r_1 is corrected to $c_1 = (0000\ 0000\ 0011\ 0110\ 1100\ 1001)$.
	- (b) $s_2 = [B|I_{12}]r_2^T = (1101 \ 1001 \ 0110)^T$, which has weight > 3 . Since s_2 differs in positions 3 and 5 from column 5 of B, the error vector is $e_2 = (0000\ 1000\ 0000\ 0010\ 1000\ 0000)$. r_2 is corrected to $c_2 = (0011\ 0000\ 0000\ 0110\ 0100\ 1110).$
	- (c) $s_1 = [I_{12}|B]r_3^T = (0110\ 0001\ 0110)^T$, which has weight > 3 . Since s_1 differs in positions 1 and 4 from column 5 of B, the error vector is $e_3 = (1001\ 0000\ 0000\ 0000\ 1000\ 0000)$. r_3 is corrected to $c_3 = (0110\ 0000\ 0000\ 0011\ 0010\ 0111).$
- 2. The factorization of $x^{17} 1$ over \mathbb{Z}_2 is $x^{17} 1 = g_1(x)g_2(x)g_3(x)$, where

$$
g_1(x) = 1 + x
$$

\n
$$
g_2(x) = 1 + x + x^2 + x^4 + x^6 + x^7 + x^8
$$

\n
$$
g_3(x) = 1 + x^3 + x^4 + x^5 + x^8.
$$

(a) $2^3 = 8$.

- (b) The possible generator polynomials of cyclic subspaces of $V_{17}(\mathbb{Z}_2)$ are $g_1g_2g_3$, g_1g_2 , g_2g_3 , g_1g_3 , g_3, g_2, g_1 , and 1. They generate cyclic subspaces of dimensions 0, 8, 1, 8, 9, 9, 16, and 17, respectively. Thus the values of k, $1 \leq k \leq 17$, for which a cyclic subspace of dimension k exists are 1, 8, 9, 16, and 17.
- (c) There is no subspace of dimension 12.
- (d) g_1g_2 (or g_1g_3) is the generator polynomial for a cyclic subspace of dimension 8.
- 3. (a) We have to prove that $C_1 \bigcap C_2$ is a vector subspace of $V_n(F)$. First note that $0 \in C_1 \cap C_2$, so $C_1 \cap C_2$ is non-empty. Let $c_1, c_2 \in C_1 \cap C_2$. Then, since C_1 and C_2 are closed under vector addition, we have $c_1 + c_2 \in C_1$ and $c_1 + c_2 \in C_2$. Hence $c_1 + c_2 \in C_1 \cap C_2$. Let $c \in C_1 \cap C_2$ and $\lambda \in F$. Then, since C_1 and C_2 are closed under scalar multiplication, we have $\lambda c \in C_1$ and $\lambda c \in C_2$. Hence $\lambda c \in C_1 \cap C_2$. We conclude that $C_1 \bigcap C_2$ is a linear code.
	- (b) Let $c \in C_1 \cap C_2$. Since C_1 and C_2 are cyclic, $\pi(c)$ (the right cyclic shift of c) is in C_1 and in C_2 . Hence $\pi(c) \in C_1 \cap C_2$, whence $C_1 \cap C_2$ is a cyclic code.
	- (c) Let $g(x) = \text{lcm}(g_1(x), g_2(x))$. Note that $g(x)$ is monic and divides $x^n 1$. Let $c(x) \in C_1 \cap C_2$. Since $c(x) \in C_1$ and $c(x) \in C_2$, it follows that $g_1(x)|c(x)$ and $g_2(x)|c(x)$. Hence $g(x)|c(x)$. Conversely, if $c(x) = a(x)g(x)$, where $a(x) \in F[x]$, then $c(x) \in C_1$ since $g_1(x)|g(x)$, and $c(x) \in C_2$ since $g_2(x)|g(x)$. Hence $c(x) \in C_1 \cap C_2$. It follows that $C_1 \bigcap C_2 = \{a(x)g(x) : a(x) \in F[x]\}.$ Since $g(x)$ is a monic divisor of $x^n - 1$, it follows from a Theorem proven in class that $g(x)$ is the generator polynomial of $C_1 \cap C_2$.
- 4. (a) We prove the result by computing the syndromes of all cyclic burst errors of length 2 or less.

error	syndrome	integer	error	syndrome	integer
$\overline{0}$	00000	$\overline{0}$	x^0+x^1	11000	24
x^0	10000	16	$x^1 + x^2$	01100	12
x^1	01000	8	$x^2 + x^3$	00110	6
x^2	00100	$\overline{4}$	$x^3 + x^4$	00011	3
x^3	00010	$\overline{2}$	x^4+x^5	10100	20
x^4	00001	1	$x^5 + x^6$	01010	10
x^5	10101	21	$x^6 + x^7$	00101	$\overline{5}$
x^6	11111	31	$x^7 + x^8$	10111	23
x^7	11010	26	$x^8 + x^9$	11110	30
x^8	01101	13	$x^9 + x^{10}$	01111	15
x^9	10011	19	$x^{10} + x^{11}$	10010	18
x^{10}	11100	28	$x^{11}+x^{12}$	01001	9
x^{11}	01110	14	$x^{12}+x^{13}$	10001	17
x^{12}	00111	$\overline{7}$	$x^{13}+x^{14}$	11101	29
x^{13}	10110	22	$x^{14} + x^0$	11011	27
x^{14}	01011	11			

Since all syndromes are distinct, we conclude that C is a 2-cyclic burst error correcting code.

- i. The received word is decoded to (01011 00000 00001).
- ii. The received word is decoded to (10001 00110 10111).
- 5. (a) First, we must check that $g(x)$ divides $x^7 1$ over \mathbb{Z}_2 . But,

$$
x^7 - 1 = (x^3 + x^2 + 1)g(x)
$$

so $g(x)$ does generate a binary cyclic $(7, 3)$ code.

To check that it is 2-cyclic burst error correcting, we merely check that all cyclic bursts of length 2 have different syndromes. The following table lists cyclic bursts of length at most 2 and their syndromes (in vector form) where we use the parity-check matrix H such that the syndrome polynomial of $r(x)$ is $r(x) \mod g(x)$.

Since all syndromes are different, C is 2-cyclic burst error correcting.

- (b) C^* is just the code obtained by interleaving C to a depth of 2. Since C can correct cyclic bursts of length 2, C^* can correct cyclic bursts of length $2 \cdot 2 = 4$.
- (c) Let us de-interleave r into $r_{odd} = (1100011)$ and $r_{even} = (0000110)$ in C. Now use the errortrapping algorithm to determine the error vector e_{odd} and e_{even} for these two vectors in C.

The following table lists the syndromes for cyclic shifts of r_{odd} (in vector form).

When $i = 3$, we get a burst of length 2 which means that e_{odd} satisfies $x^3 e_{odd}(x) = (1100000)$. Hence, $e_{odd} = (0000110)$.

We could do the same for r_{even} . However, noticing that r_{even} is itself a burst of length 2, we must have $r_{even} = e_{even} = (0000110)$. Interleaving e_{odd} and e_{even} , we get the original error vector $e = (00000000111100)$ for r.