1. (a) Let $x^{i} + x^{i+1}$ and $x^{j} + x^{j+1}$ be two double-adjacent error patterns with $i < j$. If these are in the same coset of C, then $g(x) | (x^i + x^{i+1} + x^j + x^{j+1})$. But

$$
x^{i} + x^{i+1} + x^{j} + x^{j+1} = x^{i}(1+x) + x^{j}(1+x) = (1+x)x^{i}(1+x^{j-i}).
$$

Since $g(x) | (x^n - 1)$, then $gcd(g(x), x) = 1$, and hence $gcd(p(x), x) = 1$. If $g(x) | (1 + x)x^i(1 +$ x^{j-i}), then $p(x) | (1+x^{j-i})$, which contradicts the hypothesis that $p(x)$ does not divide x^t-1 for any $t, 1 \le t \le n-1$. Hence, no two distinct double-adjacent error patterns are in the same coset of C.

(b) We need to prove (i) that no two single error patterns are in the same coset; and (ii) that no single and double-adjacent error patterns are in the same coset. For (i), observe that if $g(x) | (x^i + x^j)$ (where $i < j$), then $g(x) | x^i (1 + x^{j-i})$. This implies that $p(x) | (1 + x^{j-i})$, which is false. For (ii), observe that if $g(x) | (x^i + x^j + x^{j+1})$, then $(1+x) | (x^i + x^j(x+1))$, whence $(1+x) | x^i$, which is impossible.

(c)
$$
g(x) = (1+x)(1+x+x^4)
$$
. Also, $g(x) = (1+x)(1+x^3+x^4)$.

2. (a) Some positive powers of β are:

$$
\beta = x^2 \n\beta^2 = -x + x^2 \n\beta^4 = -1 - x^2 \n\beta^8 = 1 - x
$$
\n
$$
\beta^9 = 1 - x + x^2 \n\beta^{10} = 1 + x - x^2 \n\beta^{12} = 1 - x - x^2 \n\beta^{13} = 1.
$$

Since the divisors of 26 are 1, 2, 13 and 26, and $\beta \neq 1$, $\beta^2 \neq 1$, but $\beta^{13} = 1$, the order of β is 13.

(b) The cyclotomic cosets of 3 modulo 13 are:

$$
\{0\}, \{1,3,9\}, \{2,6,5\}, \{4,12,10\}, \{7,8,11\}.
$$

(c) The cyclotomic cosets $\{1, 3, 9\}$ and $\{4, 12, 10\}$ correspond to cubic irreducible polynomials over $GF(3)$ that are reciprocals of each other. A similar statement holds for the cosets $\{2, 6, 5\}$ and $\{7, 8, 11\}.$

We first compute

$$
g_1(y) = (y - \beta)(y - \beta^3)(y - \beta^9)
$$

= $y^3 - (\beta + \beta^3 + \beta^9)y^2 + (\beta^4 + \beta^{10} + \beta^{12})y - \beta^{13}$
= $y^3 + y^2 + y - 1$.

We next compute $g_2(y) = (y - \beta^2)(y - \beta^5)(y - \beta^6) = y^3 - y - 1$. Thus

$$
y^{13} - 1 = (y - 1)(y^3 + y^2 + y - 1)(y^3 - y^2 - y - 1)(y^3 + y^2 - 1)(y^3 - y - 1).
$$

3. The cyclotomic cosets of 2 modulo 31 are:

 $C_0 = \{0\}, C_1 = \{1, 2, 4, 8, 16\}, C_3 = \{3, 6, 12, 24, 17\}, C_5 = \{5, 10, 20, 9, 18\}$

 $C_7 = \{7, 14, 28, 25, 19\}, \quad C_{11} = \{11, 22, 13, 26, 21\}, \quad C_{15} = \{15, 30, 29, 27, 23\}.$

The set $C_1 \cup C_3 \cup C_5 \cup C_7$ contains the elements 1 to 10, and has cardinality 20. Hence

$$
g(x) = m_{\alpha}(x)m_{\alpha^3}(x)m_{\alpha^5}(x)m_{\alpha^7}(x)
$$

= 1 + x² + x⁴ + x⁶ + x⁷ + x⁹ + x¹⁰ + x¹³ + x¹⁷ + x¹⁸ + x²⁰

is a generator polynomial for the required code.

- 4. We have $r(x) = x^2 + x^4 + x^5 + x^6 + x^{10} + x^{11} + x^{12} + x^{14}$.
	- We compute

$$
s_1 = r(\beta) = \beta^2 + \beta^4 + \beta^5 + \beta^6 + \beta^{10} + \beta^{11} + \beta^{12} + \beta^{14} = \beta
$$

$$
s_3 = r(\beta^3) = \beta^6 + \beta^{12} + 1 + \beta^3 + 1 + \beta^3 + \beta^6 + \beta^{12} = 0.
$$

• We compute the error locator polynomial

$$
\sigma(z) = z^2 + s_1 z + \frac{s_3}{s_1} + s_1^2 = z^2 + \beta z + \beta^2.
$$

Since the roots are β^i and β^j with $\beta^i\beta^j = \beta^2$, we have $i + j \equiv 2 \pmod{15}$. So, check if $\beta^{i} + \beta^{j} = \beta$ for $(i, j) \in \{(0, 2), (3, 14), (4, 13), (5, 12), (6, 11), (7, 10), (8, 9)\}.$ We find that $\beta^6 + \beta^{11} = \beta$. Thus

• Thus $e = (00000\ 01000\ 01000)$, and r is corrected to $c = (00101\ 10000\ 10101)$.