CO342 ASSIGNMENT #1 DUE: 9:30AM WEDNESDAY 11 MAY 2011

- 1. Let G be a graph, having at least two edges, with the following properties: (i) for every edge e of G, G e is connected; and (ii) for any distinct edges e, f of G, (G e) f is not connected. Prove that G is a cycle.
- 2. For every positive integer n with $n \ge 3$, give an example of a graph G on n vertices that has both an avoidable and an unavoidable vertex.
- 3. Let m and n be positive integers. Determine the avoidable and unavoidable vertices in:
 - (a) the complete graph K_n ;
 - (b) the complete bipartite graph $K_{m,n}$;
 - (c) the *n*-dimensional cube Q_n .
- 4. Let v be a vertex in the n-dimensional cube Q_n . Determine the avoidable and unavoidable vertices in $Q_n - v$. Hint: Q_n is a bipartite graph that has a perfect matching, so a maximum matching in $Q_n - v$ has size $2^{n-1} - 1$.
- 5. Let T be a tree having at least two vertices. Let v be a vertex of T with degree 1 and let w be its neighbour in T.
 - (a) Prove that $\nu(T) = 1 + \nu(T \{v, w\}).$
 - (b) Based on 5a, describe how to find a maximum matching in a tree. (Do not forget to take into account that $T - \{v, w\}$ might not be connected.)
 - (c) Based on 5a, or otherwise, prove that a tree has at most one perfect matching.