
CO342 ASSIGNMENT #10
DUE: IN CLASS WEDNESDAY 20 JULY 2011

1. (a) Let G be a connected graph and let A be any non-empty subset of
V (G). Prove that G contains a (not necessarily spanning) tree T
so that every leaf of T (typo corrected) is in A and every vertex
of A is in T (not necessarily as a leaf).

SOLUTION. There are two kinds of solutions. In the first, we
let a1, a2, . . . , ak be the vertices in A and one at at time add them
to the tree. Let T1 be the first tree, consisting just of a1. Given
tree Ti that contains at least a1, a2, . . . , ai, and every leaf of Ti is
in A, then either every vertex of A is already in Ti and we are
done, or there is a least j > i so that aj is not yet in Ti. In that
case, we let P be a shortest path joining aj to a vertex in Ti; thus,
P has aj as one end and the intersection of P with Ti is the other
end of P . Now set Ti+1 = Ti ∪ P . It is easy to see that any leaf
of Ti+1 is either a leaf of Ti or aj. Eventually there is a least i so
that Ti contains all the vertices in A; all the leaves of Ti are in A.

In the other solution, let T be a minimal tree in T containing all
the vertices in A. (Any spanning tree of G will have this property,
but it might have some leaves that are not in A.) If some leaf v of
T is not in A, then T −v is a proper subtree of T that contains all
the vertices in A, contradicting the minimality of T . Therefore,
all the leaves of T are in A.

(b) Let C be a cycle in a connected graph G and let B be a C-bridge.
Let A denote the set of attachments of B (these are the vertices
in B ∩C). Prove that B contains a tree T so that the leaves of T
are precisely the vertices in A.

SOLUTION. If B is just an edge whose ends are both in C,
then B itself is such a tree. Thus, we may assume B arises from
a component K of G − V (C) by the addition of edges with one
end in K and one end in C, together with the ends in C of these
edges.

For each vertex v of B ∩ C, there is a vertex wv of K adjacent
to v. Let A consist of the set of these wv. Since K is connected,



Part (a) implies there is a tree T in K containing all the wv so
that every leaf of T is in A. Now add the vertices in B ∩ C to T ,
along with the edges vwv; this yields the desired tree.

2. [15 points] Let m ≥ 3 and n ≥ 3 be positive integers and let Πm,n

denote the graph with vertex set consisting of all the ordered pairs
(i, j), with i in {0, 1, 2, . . . ,m − 1} and j in {0, 1, 2, . . . , n − 1}, and
the vertex (i, j) is adjacent to the four vertices (i + 1, j), (i − 1, j),
(i, j + 1) and (i, j − 1). We remark that first coordinates are numbers
read modulo m, while second coordinates are numbers read modulo n.
In particular, (0, n− 1) is adjacent to (1, n− 1), (m− 1, n− 1), (0, 0),
and (0, n − 2). See the figure for two different drawings of the graph
Π4,6.

Figure 1: Two drawings of Π4,6.

Here are some problems about Πm,n ([5 points each]).

(a) Prove that, for each i = 0, 1, . . . ,m− 1 and j = 0, 1, 2, . . . , n− 1,
the 4-cycle

((i, j), (i + 1, j), (i + 1, j + 1), (i, j + 1), (i, j))

is a peripheral cycle, where the first coordinates are read modulo
m and the second are read modulo n.

SOLUTION. Neither of the adjacencies (i, j)(i + 1, j + 1) nor
(i + 1, j)(i, j + 1) occurs in G, so, for the 4-cycle

C = ((i, j), (i + 1, j), (i + 1, j + 1), (i, j + 1), (i, j)) ,

2



there is no C-bridge consisting of an edge not in C joining two
vertices in C.

Since m ≥ 3 and n ≥ 3, there exist k 6= i, i+ 1 so that 0 ≤ k < m,
and ` 6= j, j+1 so that 0 ≤ ` < n. For each vertex (r, s) of G not in
C, there is a path in the cycle ((r, s), (r, s+1), (r, s+2), . . . , (r, s−
1)) (second coordinates read modulo n) that does not go through
(r, j) and (r, j + 1), but joins (r, s) to (r, `). We may then join
(r, `) to (k, `) using the cycle ((0, `), (1, `), . . . , (m − 1, `)) — this
is disjoint from C. Thus, every vertex of G− V (C) is joined by a
path in G−V (C) to (k, `) and, therefore, G−V (C) is connected.

We conclude that there is only one C-bridge, as required.

(b) Prove that, for each i = 0, 1, 2 . . . ,m − 1, the n-cycle Ci defined
by

Ci = ((i, 0), (i, 1), (i, 2), . . . , (i, n− 1), (i, 0))

is peripheral.

SOLUTION. The only edges of the form (i, j)(i, k) have k ≡ j±
1 (mod n). Therefore, there is no edge of Ci joining two vertices
of Ci except for the edges of Ci.

Every vertex (j, k) in G−V (Ci) has first coordinate different from
i. We can join (j, k) to (i− 1, 0), first by a (j, k)(i− 1, k)-path in
the cycle ((0, k), (1, k), . . . , (m−1, k), (0, k)) that avoids (i, k), and
then by an (i − 1, k)(i − 1, 0)-path in the cycle Ci−1. Therefore,
G− V (Ci) is connected, as required.

(c) Prove that, for i = 1, 2, . . . ,m− 1, E(Ci) is a linear combination
of E(C0) and the edge sets of the cycles mentioned in (2a).

SOLUTION. Let Qi,j be the cycle

((i, j), (i + 1, j), (i + 1, j + 1), (i, j + 1), (i, j)) .

It is easy to check that E(Ci) = E(Ci−1)⊕Xi, where

Xi =
n−1⊕
j=0

E(Qi−1,j) .

Now a simple induction on i shows that E(Ci) is a linear combi-
nation of E(C0) and the E(Qk,`).
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Alternatively, for 10 extra bonus points = 15 points total
prove that the edge sets of the cycles mentioned in (2a), E(C0),
and the edge set of the cycle

((0, 0), (1, 0), (2, 0), . . . , (m− 1, 0), (0, 0))

(typo corrected) span the cycle space of Πm,n (typo corrected).

SOLUTION. Let z be in the cycle space of Πm,n. We can use
the squares ((j, k), (j + 1, k), (j + 1, k + 1), (j, k + 1)) to eliminate
all edges in z that join any (i, k) to (i, k + 1), except at most
one, which we can arrange (with these squares) to be (i, 0)(i +
1, 0). After all this elimination, we have an element z′ of the
cycle space of Πm,n whose edges are in C0, C1, . . . , Cm−1, and the
cycle ((0, 0), (1, 0), (2, 0), . . . , (m− 1, 0), (0, 0)).

If some edge of any Ci is in z′, then E(Ci) ⊆ z′, as otherwise
there is a vertex of Ci − (i, 0) that is incident with only one edge
of z′, a contradiction. From the easier version of this question,
each Ci is a sum of C0 and squares. Therefore, we may eliminate
all the Ci from z′ to get an element z′′ of the cycle space that is
contained in

E( ((0, 0), (1, 0), (2, 0), . . . , (m− 1, 0), (0, 0)) ) , .

Either z′′ is all the edges in this cycle or it is empty; in either case,
we have z is a linear combination of C0, ((0, 0), (1, 0), (2, 0), . . . ,
(m− 1, 0), (0, 0)), and the squares, as required.

3. Let C be a cycle in a graph G. The overlap diagram OD(C) is a new
graph having a vertex for each C-bridge, and an edge joining any two
vertices corresponding to overlapping C-bridges.

Prove: if G is planar, then OD(G) is bipartite. (Hint: relate the bipar-
tition to how the C-bridges sit in a planar embedding of G.)

SOLUTION. Suppose two C-bridges B1 and B2 are on the same side
of C in a planar embedding of G. We claim that B1 and B2 avoid each
other. Otherwise, they overlap, and there are two cases to consider.

If there are attachments x1 and y1 of B1 and x2 and y2 of B2 so that
x1, x2, y1, y2 are distinct and occur in this cyclic order on C, then, for
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i = 1, 2, let Pi be an xiyi-path in Bi so that Pi ∩ C is just xi and yi.
Then P1 and P2 are totally disjoint.

The disjoint paths P1 and P2 are on the same side of C in the embed-
ding, and therefore they must cross, which is impossible.

In the other case, B1 and B2 both have precisely three attachments, and
they are the same three vertices x, y, z. For i = 1, 2. Question 1 (b)
implies there is a tree Ti in Bi so that the leaves of Ti are precisely
x, y, z. Then Ti has exactly one degree 3 vertex vi, which is joined to
x, y, z in Ti by paths P i

x, P i
y, and P i

z, respectively.

In the planar embedding of G, T1 is embedded on one side of C and v2
is embedded on that same side of C. Thus, v2 is in one of the faces
of C ∪ T1; we may assume this is the one bounded by P 1

x ∪ P 1
y and the

xy-subpath of C that does not contain z. But now the path P 2
z must

cross this boundary cycle, again a contradiction.

This shows that, indeed, B1 and B2 avoid each other. This implies that
two C-bridges on the same side of C in the embedding are not adjacent
in OD(G). Thus, every edge of OD(G) joins C-bridges that are on
different sides of C in the planar embedding of G. Since C has only
two sides, this implies that OD(G) is bipartite, as claimed.

4. Let G be a connected graph and let H and K be subgraphs of G so
that G = H ∪K. Suppose G contains a subdivision of K3,3.

(a) Suppose H ∩ K is just one vertex. Show that either H or K
contains a subdivision of K3,3.

SOLUTION. Let v be the vertex common to H and K and let
L be a subdivision of K3,3 in G. We claim that either L ⊆ H
or L ⊆ K. The alternative is that some vertex vH of L is in
H − V (K) and some other vertex vL of L is in K − V (H). Since
L is a 2-connected graph, there is a cycle C of L containing both
vH and vL.

On the other hand, C − v gives a path in G − v joining vH and
vL, which is impossible. Therefore, either L has no vertices in
H − V (K) or L has no vertices in K − V (H). That is, either
L ⊆ K or L ⊆ H.
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(b) Suppose H∩K is just two vertices u and v so that both H−{u, v}
and K−{u, v} are connected. Show that either H +uv or K +uv
contains a subdivision of K3,3.
(Hint: If both H − {u, v} and K − {u, v} had one of the degree-
3 vertices of the K3,3-subdivision L, then they are joined by 3
internally-disjoint paths in L, which is impossible in G.)

SOLUTION. Suppose H−V (K) contains a vertex vH of degree
3 in L and K − V (H) contains a vertex vK of degree 3 in L. In
L there are three internally disjoint vHvK-paths. These are, of
course, paths in G. But this contradicts Menger’s Theorem and
the fact that vH and vK are in different components of G−{u, v}.
Therefore, all the degree 3 vertices of L are in the same one of H
and K. We may choose the labelling so they are all in H.

It may happen that some edge e of L is in K. But such an edge
is in some path P of L joining two degree 3 vertices in L. In
particular, P must contain both u and v, and we may replace the
uv-subpath of P with the edge uv to see that this new subdivision
of K3,3 is contained in H + uv.
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