CO342 ASSIGNMENT #1

1. Let G be a graph, having at least two edges, with the following properties: (i) for every edge e of $G, G - e$ is connected; and (ii) for any distinct edges e, f of $G, (G - e) - f$ is not connected. Prove that G is a cycle.

SOLUTION. Let uv be an edge of G and let P be a uv-path in $G - e$. Then $P + uv$ is a cycle C in G.

Suppose f is an edge of G not in C. By (i), $G - f$ is connected and obviously contains C. But then the edge uv is in C in $G - f$ and so is not a bridge of $G-f$. Therefore, $(G-f)-uv$ is connected, contradicting (ii). It follows that every edge of G is in C .

If v is a vertex of G not in C, then, as G is connected, v is incident with an edge of G that is not in C , contradicting the conclusion of the preceding paragraph. Thus, every vertex of G is also in C.

2. For every positive integer n with $n \geq 3$, give an example of a graph G on n vertices that has both an avoidable and an unavoidable vertex.

SOLUTION. If $m < n$, then the graph $K_{m,n}$ has the n vertices of degree m avoidable; while the m vertices of degree n are unavoidable.

- 3. Let m and n be positive integers. Determine the avoidable and unavoidable vertices in:
	- (a) the complete graph K_n ;

SOLUTION. If n is even, then all vertices are unavoidable. If n is odd, then all vertices are avoidable.

(b) the complete bipartite graph $K_{m,n}$;

SOLUTION. When $m < n$, see Question 2. For $m = n$, all vertices are unavoidable.

(c) the *n*-dimensional cube Q_n .

SOLUTION. As we discussed in class, Q_n has a perfect matching, so all vertices are unavoidable.

4. Let v be a vertex in the *n*-dimensional cube Q_n . Determine the avoidable and unavoidable vertices in $Q_n - v$.

SOLUTION. Since Q_n is bipartite and has a perfect matching, the two sides A and B of the bipartition of Q_n have the same size. Let A be the part of the bipartition of Q_n containing v. Then $\nu(Q_n-v) = \nu(Q_n)-1$, so a maximum matching in $Q_n - v$ must saturate all the vertices of A — so these are unavoidable in $Q_n - v -$ and saturate all but one of the vertices in B.

We claim that all the vertices of B are avoidable. We proceed by induction, the base case $n = 1$ being trivial. We may assume $n \geq 2$ and $v = 000...0$. If $u \in B$ is not $111...1$, then there is a coordinate of u that is 0. All the vertices with that coordinate 0 yields a subgraph isomorphic to Q_{n-1} and the induction applied to that subgraph gives a matching M that saturates every vertex except u and v. A perfect matching in the subgraph with that coordinate always equal to 1 shows u is avoidable.

In the remaining case, n is odd and $u = 111...1$. In this case, consider the subgraph isomorphic to Q_{n-1} with all first coordinates equal to 0. There is a matching in this subgraph that saturates every vertex except v and 001 . . . 1. In the subgraph isomorphic to Q_{n-1} with all first coordinates equal to 1, there is a matching that saturates every vertex except u and $101 \ldots 1$. To these two matchings we add the edge of Q_n joining $001...1$ and $101...1$ to get the matching that misses just u and υ .

- 5. Let T be a tree having at least two vertices. Let v be a vertex of T with degree 1 and let w be its neighbour in T .
	- (a) Prove that $\nu(T) = 1 + \nu(T \{v, w\}).$

SOLUTION. Since v and w are adjacent in T, $\nu(T - \{v, w\})$ $\nu(T) - 1$, since, for any matching M in $T - \{v, w\}$, $M \cup \{vw\}$ is a matching in T.

On the other hand, suppose M is a matching in T. Then either $vw \in M$ or v is unsaturated by M. In the former case, $M - \{vw\}$ is a matching in $T - \{v, w\}$ with size $|M| - 1$. In the latter case, M is a matching in $G-v$; therefore, there is a matching of size at least $|M| - 1$ in $G - \{v, w\}$. These remarks prove $\nu(T - \{v, w\}) \ge$ $\nu(T)-1$.

(b) Based on 5a, describe how to find a maximum matching in a tree. (Do not forget to take into account that $T - \{v, w\}$ might not be connected.)

SOLUTION. Start with forest $F_0 = T$ and $M_0 = \emptyset$. As long as F_i has an edge, let v_i be a vertex of degree 1 in F_i , w_i its neighbour in F_i , set $M_{i+1} = M_i \cup \{v_i w_i\}$ and $F_{i+1} = F_i - \{v_i, w_i\}$.

At termination, F_k has no edges and M_k is a maximum matching in T. The proof that M_k is a maximum matching uses the fact that the maximum matching in a graph is composed of maximum matchings in each component. Thus, 5a implies that $v_i w_i$ is in some maximum matching of F_i and so $\nu(F_{i+1}) = \nu(F_i) - 1$. It is now a trivial induction to see that $\nu(T) = \nu(F_i) + i$ and, therefore, $\nu(T) = k$ (with k being the first index for which F_k has no edges.

(c) Based on 5a, or otherwise, prove that a tree has at most one perfect matching.

SOLUTION. Let M be a perfect matching in T, let v be a vertex of T with degree 1 in T , and let w be its neighbour in T . Then $5a$ *implies vw* ∈ *M*, so *M* − {*vw*} *is a perfect matching in* $T - \{v, w\}$. By induction, each component of $T-\{v, w\}$ has at most one perfect matching, so $M - \{vw\}$ is uniquely determined. Therefore, so is M .

The base of the induction is $T = K_2$, which obviously has only one perfect matching.