CO342 ASSIGNMENT #2

The Mazimum Matching Formula is:
U@ = %min [V(G)] - 0dd(G — ) +1S] : SCV(G)}.

The Perfect Matching Criterion is: G has a perfect matching if and only
if, for every S C V(G),
odd(G — 95) < |5].

1. Let 2 and B be sets of (finite) sets with the property that, for every
A € A and every B € B, |A| < |B|. Suppose that there is a set A* € 2
and a set B, € B so that |A*| = | B,|. Prove that

|A*| = max{|A| : A € A} and |B,| = min{|B| : B € B}.

SOLUTION. Let A € A. The assumption implies that |A| < |B.].
Since |A*| = |B.|, we see that |A| < |A*| and, therefore, |A*| =
max{|A| : A € 2A}.

Similarly for B € B: |B| > |A*| = |B.|, so |B.| = min{|B| : B € B}.
2. Let G be a graph and let S C V(G). Recall odd(G — S) is the number

of components of G — S that have an odd number of vertices. Let M
be an matching in GG. Prove that

M) < 5 (V(G)] ~odd(@ — 8) +5])

SOLUTION. Let K be a component of G — S. Let Mg consist of
those edges in M having both ends in K. Clearly, |Mg| < @ FEach
vertex in S is incident with at most one edge of M. Let M° denote the
edges of M incident with vertices in S, so |[M°| <|S)|.

Clearly, every edge in M is either in M*° or in one of the My . There-
fore, M| = |M5|+3" . |Mk|, where the sum is over all the components
K of G- S.

Break up the sum ), |[Mg| into the two sums

S Mkl+ ) Mkl

K,|V(K)| even K,|V(K)| odd



Thus,

Z|MK| < Z |V(2K)|Jr Z |V(K2)|—1

K| V(K)| even K|V(K)| odd
V(G = 8)| = 0dd(G — 5)
5 .

It follows that

V(G = S)| —odd(G —95)
5 ;

M| < |S|+

which 1s the same as the inequality in the question.

. Let G be the graph in the figure and let 7" consist of the three red
vertices.

(a) Find a matching M in G so that

M| = %(|V(G)| —odd(G —T) + |T|) |

SOLUTION. My matching M* consisting of the green edges in
the figure has 9 edges. In this case, |V (G)| = 22, odd(G-T) =7,

and |T| = 3. Therefore, (|V(G)| —odd(G—-T)+ \T\) =1(22—
7+3) =9, as required.
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(b) Explain how you know M is a maximum matching.

SOLUTION. From (2), for any matching M and any S C V(G),
1
M| < 2 (V(G)] ~ o0dd(G - )+ |5])

From (1), M* is a mazimum matching.
(c) Determine the avoidable and unavoidable vertices in G.
SOLUTION. The unavoidable vertices are A, B, C', D, E, F,

and G, as well as the three vertices in T. All other vertices are
avoidable.



4. Prove that the Perfect Matching Criterion implies the Maximum Match-

ing Formula. (Hint: Let k = max{odd(G—95)—|S| : SCV(G)}. Let
G’ be the graph obtained from G by adding k new vertices, all joined to
every vertex of G. Use the Perfect Matching Criterion to show G' has
a perfect matching M. Deduce that G has a matching of size |M| — k.
Show this is at least ${min{|V(G)| — odd(G — S) + |S]: S C V(G)}.)

SOLUTION. Let k and G’ be given as in the hint. Let W consist of the
k new vertices. Let S C V(G'). We show that |S| > odd(G' — S). This
holds if k = 0, in which case the Perfect Matching Theorem implies G
has a perfect matching, which easily combines with k = 0 to show that

V(G) = (1/2) min{|[V(G)] — odd(G — S) + |S| : S C V(G)}.

We therefore suppose k > 0. We claim G' has only one component and
an even number of vertices. We first note that, for any set S C V(QG),
\V(G)| and odd(G — S) — |S| are either both even or both odd. To
see this, |V(G)| is the sum of |S| and the numbers of vertices in each
component of G — S. Taken modulo 2, the even components of G — S
contribute nothing to the sum, while each odd component contributes 1.
This is the same as saying that |V (G)| = odd(G — S) + |S| (mod 2).
This is equivalent to |V(G)| = odd(G — S) — |S| (mod 2), as required.

So we have proved that, for any S C V(G), odd(G — S) — |S| =
\V(G)| (mod 2). Since k is equal to odd(G — T) — |T|, for some
T CV(G), V(G| = k (mod 2). That is, V(G| = |V(G)| + k is
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even. Moreover, since k > 1, G’ has more vertices than G does. Every
vertex of G' is joined to any particular vertex of G' by a path of length
at most 2, so G’ is connected.

To show that, for every S C V(G'), |S| > odd(G’ — S), there are three
cases: (i) W C S; (ii) V(G) C S; and (iii) some vertex of W is not in
S and some vertex of V(G) is not in S.

For (i), let 8" = S\ W. Then |S| = |5'| + k and S" C V(G). Also,
G'—S=G-95, s0o0dd(G'=S) = odd(G—S"). Therefore, |S|—odd(G'—
S)= |54+ k—odd(G —95"). Since k = max{odd(G —T)—|T|:T C
V(G)}, we see that k > odd(G—S")—|S|. Thus, |S|—odd(G'—S) > 0,
as required.

In case (ii), G' — S consists of those vertices in W that are not in S.
It is the definition that k = |W|; we claim that |V (G)| > |W|. To see
this, let T be a subset of V(G) so that k = odd(G—T)—|T|. Then there
are at least k odd components of G —T', each of which has a different
vertex of G. Therefore, G has at least k vertices.

Now odd(G' — S) = |[W \ S|. Note that |S| = |V(G)|+ k — W\ S|.
Thus,

15| = [V(G)|+k—[W\S|
> |V(G)|+k — |W]
> [V(G)]
> W]
> [W\ S
= odd(G'—9).

Finally, in case (iit), let v e V(G)\S andw € W\S. By the construc-
tion of G', vw is an edge of G'. Therefore, G' — S is connected. Thus,
if |S] > 1, it is obvious that |S| > odd(G’ — S). If, on the other hand,
|S| =0, then G' — S = G'; since G' is connected and has an even num-
ber of vertices, odd(G") = 0 and so, when |S| =0, |S| > odd(G’ — S)
also holds.

The Perfect Matching Criterion shows that G' has a perfect matching
M'. If we delete the vertices of W from G’ and their incident edges
from M', we get a matching M in G of size precisely |M'| — k, which



is (1/2)|[V(G")| — k, or ([V(G)| = k)/2. Thus,

M) = S (V(O) - k)
- % (IV(G)| — max{odd(G — ) — |5] : S C V(G)})
= S min{[V(G)] - 0dd(G ~ 8) +18] : S € V(G)} |

as required.

. Let G be a bipartite graph with bipartition (X,Y’). For a subset S of
X, N(S) denotes all the vertices in Y adjacent to at least one vertex
in S — the “neighbours” of S. Use the Maximum Matching Formula
to prove that the size of a maximum matching in G is equal to

| X| — max{|S| — |N(S)| : SCX}.

(Remark: I am not interested in other proofs of this fact. It is proved
in Math239 by quite different methods. The point is to show that the
theorem for general graphs implies the theorem for bipartite graphs.)

SOLUTION. Let T be as in the hint. Then G —T has odd(G — T)
odd components, plus some even components. Let M be a maximum
matching in G. Then M provides a perfect matching for every even
component of G — T and, within each odd component, M saturates all
but one of the vertices in the odd component with edges contained in
the odd component. FEvery vertex in T is saturated by an edge of M
whose other end is in some odd component of G — T.

Let X be the set of the odd components of G—T having more vertices in
X than in'Y and let S be the set of vertices in X in those components.
Notice that the neighbours of S are the vertices in'Y that are in either
T or an odd component in X.

It v is a vertex in Y NT, then v is incident with an edge vw of M and
w s i and odd component of G —T'. Because G s bipartite, w € X
and, therefore, w € S. In particular, every vertex of Y N'T is in N(S5).

Combining all the above observations, M saturates every vertexr in X
except exactly |X| — | X NT| vertices. We rewrite this last expression
in terms of |S| and |N(S)].



Every component C' in X has (|V(C)|+1)/2 vertices in X and (|V(C)|—
1)/2 vertices in' Y. That is, |S| is the sum the numbers (|[V(C)|+1)/2,
over all the components C' in X. On the other hand, |[N(S)| is the sum
of the numbers (|V(C)| — 1)/2 over all those same components, plus
Y NT|. The difference |S| — |N(S)| is, therefore, the sum of

Vay+1 _ VO)-1
2 2

over all the components in X, minus |Y N T|. Since the displayed
numbers are all 1’s, |S| — [N(S)| = |X| =Y NT|.

Since every matching must miss at least |S| — |N(S)| vertices in X, M
is a mazimum matching and |S| — |N(S)| mazimizes the estimate of
the number of missed vertices. That is, |M| = |X| — |S| + |N(S)| =
| X| —max{|T| — |N(T)| : T C X}, as required.



