CO342 ASSIGNMENT #3 DUE: IN CLASS, WEDNESDAY 25 MAY 2011

- 1. Let G be a graph and let H and K be connected subgraphs of G. Suppose there is a vertex of G in both H and K. Prove that $H \cup K$ is connected.
- 2. Let G be a graph and let \mathcal{P} be some set of subgraphs of G. An element H of \mathcal{P} is \mathcal{P} -maximal if there is no graph K in \mathcal{P} so that H is a proper subgraph of K (that is, $H \subseteq K$ and $H \neq K$).

Prove that if $H \in \mathcal{P}$, then there is a \mathcal{P} -maximal element K of \mathcal{P} so that $H \subseteq K$.

- 3. Let G be a connected graph. A cut-vertex in G is a vertex v of G so that G v is not connected. Let \mathcal{Q} denote the set of subgraphs H of G so that there is no cut-vertex in H.
 - (a) Let uv be any edge of G. Let H_{uv} denote the subgraph of G consisting of just u, v, and uv. Show that there is no cut-vertex in H_{uv} .
 - (b) Using Question 2 or otherwise, prove that there is a Q-maximal subgraph of G containing uv.
 - (c) Let H and K be subgraphs of G that are in \mathcal{Q} . Show that if H and K have at least two vertices in common, then the union of H and K is also in \mathcal{Q} .
 - (d) Show that if H and K are distinct Q-maximal subgraphs of G, then H and K have at most one vertex in common.
- 4. The *blocks* of a graph G are the Q-maximal subgraphs of G. Prove that:
 - (a) every edge is in a unique block of G
 - (b) if uv is an edge of G, then the subgraph of G consisting of just u, v, and uv is a block of G if and only if uv is a bridge of G.
- 5. Let G be a graph and let T be a spanning tree of G.
 - (a) Determine which vertices of T are cut-vertices of T and which are not.

- (b) Prove that every cut-vertex of G is a cut-vertex of T.
- (c) Deduce that G has at least two vertices that are not cut-vertices of G.