
CO342 ASSIGNMENT #3 SOLUTIONS

1. Let G be a graph and let H and K be connected subgraphs of G.
Suppose there is a vertex of G in both H and K. Prove that H ∪K is
connected.

SOLUTION. Let u be a vertex of G that is in both H and K. For any
vertices v and w of H ∪K, there is a uv-path Pv in H ∪K (actually
either in H or K, depending on where v is) and (similarly) a uw-path
Pw in H ∪K. Therefore there is a vw-walk in H ∪K, and so there is
a vw-path in H ∪K.

2. Let G be a graph and let P be some set of subgraphs of G. An element
H of P is P-maximal if there is no graph K in P so that H is a proper
subgraph of K (that is, H ⊆ K and H 6= K).

Prove that if H ∈ P , then there is a P-maximal element K of P so
that H ⊆ K.

SOLUTION. I have intentionally made this quite formal. Let
H0 = H. For a given non-negative integer i, we suppose inductively
that we have a sequence H0, H1, . . . , Hi of graphs in P so that, for each
j ∈ {1, 2, . . . , i}, Hj−1 is a proper subgraph of Hj. (With our definition
of H0, we have this for i = 0.)

If Hi is P-maximal, then we are done: H ⊆ Hi. If Hi is not P-
maximal, then it is a proper subgraph of some Hi+1 ∈ P and the se-
quence grows longer.

The crucial observation — trivially proved by induction on i — is that,
for every i ≥ 0,

|V (H)|+ |E(H)|+ i ≤ |V (Hi)|+ |E(Hi)| ≤ |V (G)|+ |E(G)| .

Therefore, i can be at most

(|V (G)|+ |E(G)|)− (|V (H)|+ |E(H)|) ,

so, for some i ≤ (|V (G)|+ |E(G)|) − (|V (H)|+ |E(H)|), Hi is P-
maximal, as required.



3. Let G be a connected graph. A cut-vertex in G is a vertex v of G so
that G − v is not connected. Let Q denote the set of (inserted in
the solutions, but not in the original question CONNECTED
subgraphs H of G so that there is no cut-vertex in H.

(a) Let uv be any edge of G. Let Huv denote the subgraph of G
consisting of just u, v, and uv. Show that there is no cut-vertex
in Huv.

SOLUTION. Deleting a vertex of Huv leaves a graph with one
vertex, which is necessarily connected. Therefore, Huv has no cut-
vertex.

(b) Using Question 2 or otherwise, prove that there is a Q-maximal
subgraph of G containing uv.

SOLUTION. Since the preceding part shows Huv is in Q, Ques-
tion 2 implies there is a Q-maximal element containing Huv.

(c) Let H and K be subgraphs of G that are in Q. Show that if H
and K have at least two vertices in common, then the union of H
and K is also in Q.

SOLUTION. Let u and u′ be two vertices common to H and K.
Let v be any vertex of H ∪K.

By Question 1, H ∪K is connected. Since H and K are both in
Q, both H − v and K − v are connnected. (If, for example, v is
not in H, then H − v is just H.) At least one of u and u′ is not
equal to v, so Question 1 implies (H − v) ∪ (K − v) is connected,
showing v is not a cut-vertex.

(d) Show that if H and K are distinct Q-maximal subgraphs of G,
then H and K have at most one vertex in common.

SOLUTION. If H and K had two vertices in common, then
the preceding part shows that H ∪ K ∈ Q. Since H and K are
distinct connected subgraphs of G, there is an edge e of G that is
in one (say H) and not the other (this would be K). Evidently
K ⊆ H ∪K, and e is in H ∪K but not in K, so K is a proper
subgraph of H ∪K. But this contradicts the Q-maximality of K.

4. The blocks of a CONNECTED (inserted) graph G are the Q-
maximal subgraphs of G. Prove that:
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(a) every edge is in a unique block of G,

SOLUTION. Let uv be any edge of G. Part (a) of Question 3
shows uv is in at least one block. If uv is in two blocks H and K
of G, then H and K both contain u and v, contradicting (d) of
Question 3. Therefore, uv is in exactly one block of G.

(b) if uv is an edge of G, then the subgraph of G consisting of just u,
v, and uv is a block of G if and only if uv is a bridge of G.

SOLUTION. Let Huv be the subgraph of G consisting of just u,
v, and uv.

Suppose first that uv is a bridge of G. Then u and v are in different
components of G−uv. If G has no other vertex, then G is just u,
v, and uv; in this case uv is Q-maximal and so is a block of G.
Otherwise, let K be a connected subgraph of G containing uv and
having a vertex w other than u and v.

We may assume w is in the component Ku of K − uv containing
u. This implies that v and w are in different components of K−u,
showing u is a cut-vertex of K. Therefore, uv is not in any larger
connected subgraph that has no cut-vertex. That is, Huv is Q-
maximal, so Huv is a block of G.

Conversely, suppose uv is not a bridge of G. Then G − uv is
connected, so there is a uv-path P in G − uv. Now P + uv is a
cycle in G containing uv. Since P + uv has no cut-vertex, Huv is
not Q-maximal; that is, Huv is not a block.

5. Let G be a graph and let T be a spanning tree of G.

(a) Determine which vertices of T are cut-vertices of T and which are
not.

SOLUTION. If v is a leaf of T , then v is a cut-vertex; every
other vertex of T is a cut-vertex.

If v is not a leaf, then T −v has deg(v) components, where deg(v)
is the number of neighbours of v in T . Therefore, v is not a cut-
vertex if and only if v has degree 1 in T ; that is, if and only if v
is a leaf of T .

(b) Prove that every cut-vertex of G is a cut-vertex of T .
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SOLUTION. Let v be a cut-vertex of G and let u and w be any
two vertices of G other than u that are in distinct components of
G− v. There is no uw-path in G− v. Any uw-path in T − v is a
uw-path in G, so there is also no uw-path in T − v, so T − v is
not connected.

(c) Deduce that G has at least two vertices that are not cut-vertices
of G.

SOLUTION. As long as G has at least two vertices this is true.
Any spanning tree T of G has at least two leaves. By Part (a),
these leaves are not cut-vertices of T . By Part (b), they are not
cut-vertices of G.
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