CO342 ASSIGNMENT #3 SOLUTIONS

1. Let G be a graph and let H and K be connected subgraphs of G. Suppose there is a vertex of G in both H and K. Prove that $H \cup K$ is connected.

SOLUTION. Let u be a vertex of G that is in both H and K. For any vertices v and w of $H \cup K$, there is a uv-path P_v in $H \cup K$ (actually either in H or K, depending on where v is) and (similarly) a uw-path P_w in $H \cup K$. Therefore there is a vw-walk in $H \cup K$, and so there is a vw-path in $H \cup K$.

2. Let G be a graph and let \mathcal{P} be some set of subgraphs of G. An element H of \mathcal{P} is \mathcal{P} -maximal if there is no graph K in \mathcal{P} so that H is a proper subgraph of K (that is, $H \subseteq K$ and $H \neq K$).

Prove that if $H \in \mathcal{P}$, then there is a \mathcal{P} -maximal element K of \mathcal{P} so that $H \subseteq K$.

SOLUTION. I have intentionally made this quite formal. Let $H_0 = H$. For a given non-negative integer *i*, we suppose inductively that we have a sequence H_0, H_1, \ldots, H_i of graphs in \mathcal{P} so that, for each $j \in \{1, 2, \ldots, i\}, H_{j-1}$ is a proper subgraph of H_j . (With our definition of H_0 , we have this for i = 0.)

If H_i is \mathcal{P} -maximal, then we are done: $H \subseteq H_i$. If H_i is not \mathcal{P} -maximal, then it is a proper subgraph of some $H_{i+1} \in \mathcal{P}$ and the sequence grows longer.

The crucial observation — trivially proved by induction on i — is that, for every $i \ge 0$,

$$|V(H)| + |E(H)| + i \le |V(H_i)| + |E(H_i)| \le |V(G)| + |E(G)|.$$

Therefore, i can be at most

$$(|V(G)| + |E(G)|) - (|V(H)| + |E(H)|) ,$$

so, for some $i \leq (|V(G)| + |E(G)|) - (|V(H)| + |E(H)|)$, H_i is \mathcal{P} -maximal, as required.

- 3. Let G be a connected graph. A cut-vertex in G is a vertex v of G so that G v is not connected. Let \mathcal{Q} denote the set of (inserted in the solutions, but not in the original question CONNECTED subgraphs H of G so that there is no cut-vertex in H.
 - (a) Let uv be any edge of G. Let H_{uv} denote the subgraph of G consisting of just u, v, and uv. Show that there is no cut-vertex in H_{uv} .

SOLUTION. Deleting a vertex of H_{uv} leaves a graph with one vertex, which is necessarily connected. Therefore, H_{uv} has no cutvertex.

(b) Using Question 2 or otherwise, prove that there is a Q-maximal subgraph of G containing uv.

SOLUTION. Since the preceding part shows H_{uv} is in Q, Question 2 implies there is a Q-maximal element containing H_{uv} .

(c) Let H and K be subgraphs of G that are in \mathcal{Q} . Show that if H and K have at least two vertices in common, then the union of H and K is also in \mathcal{Q} .

SOLUTION. Let u and u' be two vertices common to H and K. Let v be any vertex of $H \cup K$.

By Question 1, $H \cup K$ is connected. Since H and K are both in Q, both H - v and K - v are connected. (If, for example, v is not in H, then H - v is just H.) At least one of u and u' is not equal to v, so Question 1 implies $(H - v) \cup (K - v)$ is connected, showing v is not a cut-vertex.

(d) Show that if H and K are distinct Q-maximal subgraphs of G, then H and K have at most one vertex in common.

SOLUTION. If H and K had two vertices in common, then the preceding part shows that $H \cup K \in Q$. Since H and K are distinct connected subgraphs of G, there is an edge e of G that is in one (say H) and not the other (this would be K). Evidently $K \subseteq H \cup K$, and e is in $H \cup K$ but not in K, so K is a proper subgraph of $H \cup K$. But this contradicts the Q-maximality of K.

4. The *blocks* of a **CONNECTED** (inserted) graph G are the Q-maximal subgraphs of G. Prove that:

(a) every edge is in a unique block of G,

SOLUTION. Let uv be any edge of G. Part (a) of Question 3 shows uv is in at least one block. If uv is in two blocks H and Kof G, then H and K both contain u and v, contradicting (d) of Question 3. Therefore, uv is in exactly one block of G.

(b) if uv is an edge of G, then the subgraph of G consisting of just u, v, and uv is a block of G if and only if uv is a bridge of G.

SOLUTION. Let H_{uv} be the subgraph of G consisting of just u, v, and uv.

Suppose first that uv is a bridge of G. Then u and v are in different components of G - uv. If G has no other vertex, then G is just u, v, and uv; in this case uv is Q-maximal and so is a block of G. Otherwise, let K be a connected subgraph of G containing uv and having a vertex w other than u and v.

We may assume w is in the component K_u of K - uv containing u. This implies that v and w are in different components of K-u, showing u is a cut-vertex of K. Therefore, uv is not in any larger connected subgraph that has no cut-vertex. That is, H_{uv} is Qmaximal, so H_{uv} is a block of G.

Conversely, suppose uv is not a bridge of G. Then G - uv is connected, so there is a uv-path P in G - uv. Now P + uv is a cycle in G containing uv. Since P + uv has no cut-vertex, H_{uv} is not Q-maximal; that is, H_{uv} is not a block.

- 5. Let G be a graph and let T be a spanning tree of G.
 - (a) Determine which vertices of T are cut-vertices of T and which are not.

SOLUTION. If v is a leaf of T, then v is a cut-vertex; every other vertex of T is a cut-vertex.

If v is not a leaf, then T - v has deg(v) components, where deg(v) is the number of neighbours of v in T. Therefore, v is not a cutvertex if and only if v has degree 1 in T; that is, if and only if v is a leaf of T.

(b) Prove that every cut-vertex of G is a cut-vertex of T.

SOLUTION. Let v be a cut-vertex of G and let u and w be any two vertices of G other than u that are in distinct components of G - v. There is no uw-path in G - v. Any uw-path in T - v is a uw-path in G, so there is also no uw-path in T - v, so T - v is not connected.

(c) Deduce that G has at least two vertices that are not cut-vertices of G.

SOLUTION. As long as G has at least two vertices this is true. Any spanning tree T of G has at least two leaves. By Part (a), these leaves are not cut-vertices of T. By Part (b), they are not cut-vertices of G.