
CO342 ASSIGNMENT #4
DUE: IN CLASS WEDNESDAY 1 JUNE 2011

1. Let ≈ be the relation on the set E(G) of edges of G defined by: if e
and f are in E(G), then e ≈ f means either e = f or there is a cycle
of G containing both e and f .

Prove that ≈ is a transitive relation. (What you need to prove is: if e,
f , and g are edges so that e ≈ f and f ≈ g, then e ≈ g.)

SOLUTION. If e = f , or f = g, or e = g, then e ≈ g is trivial. Thus,
we may assume that e, f , and g are all distinct. Because e ≈ f , there
is a cycle Ce,f containing both e and f , and likewise there is a cycle
Cf,g containing both f and g. We may assume e is not in Cf,g and g is
not in Ce,f , as otherwise one of these cycles contains both e and g, as
desired.

In Cf,g − {f, g}, there are two paths; let P be the one from one end a
of g to one end c of f , and let Q be the other that joins the end b of g
to the end d of f . Since c is in f , c is in Ce,f , so as we traverse P from
a towards c, there is a first vertex c′ of P that is in Ce,f ; let P ′ be the
subpath of P from a to c′. Likewise, there is a subpath Q′ of Q from b
to the first vertex d′ of Q that is in Ce,f .

The vertices c′ and d′ are both in Ce,f and, furthermore, they are dis-
tinct (because c and d are distinct). Let R be the one of the two
c′d′-paths in Ce,f that contains e. Then (P ′ ∪ Q′ ∪ R) + g is a cycle
containing both e and g.

2. Recall that the blocks of a connected graph G were defined on Assign-
ment 3 to be the maximal elements of the CONNECTED subgraphs
of G that do not have a cut-vertex. Prove that if e and f are edges in
different blocks of G, then there is no cycle in G containing both e and
f .

SOLUTION. If C is a cycle in G, then C contains no vertex that is
a cut-vertex of C. Therefore, C is connected and has no cut-vertex.
Thus, there is a maximal subgraph B of G that is connected, has no
cut-vertex, and C ⊆ B. By definition, B is a block of G.

We have shown that every cycle is contained in a block of G; therefore,
edges in different blocks of G cannot be in the same cycle of G.



3. Bonus Question; not required Prove that an equivalence class of ≈
is precisely the edge set of a block.

SOLUTION. It turns out that this is in the notes. Here goes anyway.
Question 1 implies that two edges in the same equivalence class are
together in some cycle. Question 2 implies this cycle, and therefore the
two edges, are contained in the same block.

Thus, it remains to show that two edges in a single block are equivalent,
that is, they are in a cycle together. A connected graph having at least
two edges and having no cut-vertex is necessarily 2-connected. In class
we proved that any two vertices in a 2-connected graph are together in
a cycle. Let e and f be any two edges of G. Then Question 4 implies,
if we subdivide both e and f to get new vertices ue and uf , then the
result is still 2-connected. So there is a cycle in this graph through both
ue and uf . This corresponds to a cycle in the original graph through
both e and f . Therefore, e ≈ f , as required.

4. Let G be a 2-connected graph and let uv be any edge of G. Let G′ be
the graph obtained from G by deleting the edge uv and adding a new
vertex w that is adjacent just to u and v. (This is called subdividing
the edge uv.) Prove that G′ is 2-connected.

SOLUTION. Since G is 2-connected, |V (G)| ≥ 3. Clearly, |V (G′)| =
|V (G)|+ 1, so |V (G′)| ≥ 4 ≥ 3.

We must also show that, for any vertex x of G′, G′− x is connected. If
x is none of u, v, and w, then G′−x is the same as G−x, with u and v
subdivided. Since G is 2-connected, G− x is connected. If a and b are
joined by a path P in G− x, then either e is not in P , in which case a
and b are joined by P in G′−x, or e is in P and we can replace it with
(u,w, v) to get a and b joined by a path in G′ − x. Moreover, since w
is adjacent to u in G′ − x, we see that any two vertices of G′ − x are
joined to u by paths and, therefore, G′ − x is connected.

If x = u (the case x = v is the same), then G − u is connected, and
every vertex of G − u is joined to v by a path in G − u that does not
use e; these paths are also in G′ − u. Also w is joined to v by a path
in G′ − u.

Finally, suppose x = w. Then G′ − x = G − e. Since every vertex of
G − u is joined to v by a path in G − v and every vertex of G − v is
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joined by a path in G− v to u, and there is a third vertex of G, there
is also a path in G − e from u to v. That is, G′ − w is connected, as
required.

For the last two questions, let k be a positive integer and let G be a
graph. Recall that G is k-connected if:

(a) |V (G)| ≥ k + 1; and

(b) for each subset W of V (G) with |W | = k− 1, G−W is connected.

5. Let k be a positive integer and let G be a k-connected graph. Let
v1, v2, . . . , vk be distinct vertices of G. Create a new graph H from G
by adding a new vertex w that is adjacent to precisely v1, v2, . . . , vk.
Prove that H is k-connected.

SOLUTION. Since H has one more vertex than G and G has at least
k+1 vertices, H has at least k+2 (and therefore at least k+1) vertices.
So it remains to show that, if W is any set of k− 1 vertices in H, then
H −W is connected.

If the new vertex w is in W , then H − W = G − (W \ {w}). We
proved in class that a k-connected graph is also (k − 1)-connected, so
G − (W \ {w}) is connected (|W \ {w}| = k − 2). Therefore, H −W
is connected in this case.

If w /∈ W , then G−W is connected. Since |W | = k−1 < k, at least one
of v1, . . . , vk is not in W , and w is joined to this vi in H −W , showing
that H −W is the union of the two connected graphs ({w, vi}, {wvi})
and G − W . Since these two graphs have vi in common, H − W is
connected.

6. (a) For each integer n ≥ 3, give an example of a 2-connected graph
Gn so that every cycle in Gn contains all the vertices of Gn.

SOLUTION. The cycle of length n is such an example.

(b) Prove that if G is a 3-connected graph, then there is a cycle in G
that does not contain all the vertices of G.

SOLUTION. Since G is 3-connected, G has a cycle C. If C does
not contain all the vertices of G, then we are done. So suppose
C has all the vertices of G. Since G is 3-connected, |V (G)| ≥ 4.
Each vertex in G has degree at least 3 in G, so there is an edge uv
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of G that is not in C. But then at least one of the uv-paths in C
does not contain all the vertices of G; let P be one such uv-path
in C. Then P + uv is a cycle in G that does not contain all the
vertices of G.
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