CO342 ASSIGNMENT #5 DUE: IN CLASS WEDNESDAY 8 JUNE 2011 Midterm is Wed 15 June in class.

- Let G be a k-connected graph and let u, v₁, v₂,..., v_k be k + 1 distinct vertices in G. Show that there are k paths P₁, P₂,..., P_k in G so that:
 (i) for i = 1, 2, ..., k, P_i joins u and v_i; and (ii) for i ≠ j, P_i and P_j have only u in common. (Hint: Menger's Theorem that we have just proved and Asst. 4 #5.)
- 2. Let G be a k-connected graph and let A and B be any two sets of vertices, both having size k. Prove that there are k pairwise **totally** disjoint paths P_1, P_2, \ldots, P_k so that each P_i joins a vertex of A to a vertex of B. (Two paths are totally disjoint if they have no vertices in common.)
- 3. Let G be a graph and k a positive integer. Prove the following.
 - (a) Suppose G is (k + 1)-connected. Prove that, for every vertex v of G, G v is k-connected.
 - (b) Suppose that, for every vertex v of G, G v is k-connected. Prove that G is (k + 1)-connected.
- 4. For each integer $k \geq 2$, find an example of a k-connected graph G_k that has some k + 1 distinct vertices v_0, v_1, \ldots, v_k that are not all together on a cycle in G_k .
- 5. Let $k \geq 2$ be an integer, let G be a k-connected graph, and let v_1, v_2, \ldots, v_k be distinct vertices of G. Prove that G has a cycle containing all of v_1, v_2, \ldots, v_k . (Hint: use induction on k and Asst. 4 #5. For the base case k = 2, you may assume the result from class, which proves this for k = 2, so I only care about the inductive step. Be careful: it is common to overlook a case in the induction step.)