
CO342 ASSIGNMENT #5
DUE: IN CLASS WEDNESDAY 8 JUNE 2011

Midterm is Wed 15 June in class.

1. Let G be a k-connected graph and let u, v1, v2, . . . , vk be k + 1 distinct
vertices in G. Show that there are k paths P1, P2, . . . , Pk in G so that:
(i) for i = 1, 2, . . . , k, Pi joins u and vi; and (ii) for i 6= j, Pi and Pj

have only u in common. (Hint: Menger’s Theorem that we have just
proved and Asst. 4 #5.)

SOLUTION. Add a new vertex w adjacent to all of v1, v2, . . . , vk to
get a new graph H. By Asst. 4, #5, H is k-connected. Since v and w
are not adjacent in H, Menger’s Theorem implies there is a set P of
pairwise internally-disjoint uw-paths in H, with |P| = κH(u,w).

Consider any set W of vertices for which u and w are in different
components of H −W . Then H −W is not connected and so, since H
is k-connected, |W | ≥ k. Therefore, κH(u,w) ≥ k.

On the other hand, u and w are in different components of H−{v1, v2, . . . , vk},
so κH(u,w) ≤ k and, therefore, κH(u,w) = k. Consequently, |P| = k.

Moreover, each path in P contains a vi. No two paths can contain
the same vi (they are internally-disjoint) and, since there are k paths
and k vi’s, each vi is in exactly one path Pi in P. Letting P ′

i be the
uvi-subpath of Pi, we see that P ′

1, P
′
2, . . . , P

′
k are the desired paths.

2. Let G be a k-connected graph and let A and B be any two sets of
vertices, both having size k. Prove that there are k pairwise totally
disjoint paths P1, P2, . . . , Pk so that each Pi joins a vertex of A to a
vertex of B. (Two paths are totally disjoint if they have no vertices in
common.)

SOLUTION. Create a new graph H by adding new vertices u and v
to G so that u is adjacent precisely the vertices in A and v is adjacent
precisely to the vertices in B. By two applications of Asst. 4 #5, H is
k-connected. As in the preceding question, there is a set P of precisely
k pairwise internally-disjoint uv-paths in H. Each starts at u, going
to a vertex in A, then on to a vertex in B, and thence to v. Take the
part from the vertex in A to the vertex in B; the set of these AB-paths
is the desired set.



3. Let G be a graph and k a positive integer. Prove the following.

(a) Suppose G is (k + 1)-connected. Prove that, for every vertex v of
G, G− v is k-connected.

SOLUTION. Note that |V (G)| ≥ k+ 2, by definition of (k+ 1)-
connected. Therefore |V (G − v)| = |V (G)| − 1 ≥ k + 1, which is
one of the two requirements for the k-connection of G− v.

For the other requirement, let W be any set of vertices in G−v of
size k − 1. Set W ′ = W ∪ {v}. Since G is (k + 1)-connected and
|W ′| = |W |+1 = k, G−W ′ is connected. Therefore, (G−v)−W =
G−W ′ is connected, showing G− v is k-connected.

(b) Suppose that, for every vertex v of G, G−v is k-connected. Prove
that G is (k + 1)-connected.

SOLUTION. Let v be any vertex of G. Then |V (G)| = |V (G−
v)| + 1. Since G − v is k-connected, |V (G − v)| ≥ k + 1, so
|V (G)| ≥ k+ 2, one of the requirements for showing G is (k+ 1)-
connected.

For the other requirement, let W be any subset of V (G) with size
k. Let v ∈ W . The graph G− v is k-connected and W ′ = W \{v}
is a set of k−1 vertices in G−v. Thus, (G−v)−W ′ is connected.
But G −W = (G − v) −W ′, so G −W is connected; this is the
other requirement for showing G is (k + 1)-connected.

4. For each integer k ≥ 2, find an example of a k-connected graph Gk that
has some k + 1 distinct vertices v0, v1, . . . , vk that are not all together
on a cycle in Gk.

SOLUTION. Let Gk be the complete bipartite graph Kk,k+1. Let
v0, v1, . . . , vk be the vertices in the k + 1 part of the bipartition.

To see that Gk is k-connected, observe that |V (Gk)| = 2k + 1 ≥ k + 1.
If W is any set of k − 1 vertices in Gk, then G −W has at least one
vertex from each part of the bipartition and, therefore, is connected.

Because Gk is bipartite, any cycle in Gk has the same number of vertices
from each part of the bipartition. Since one part has only k vertices, no
cycle can contain all the vertices from the other part; that is, no cycle
can contain all of v0, v1, . . . , vk.
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5. Let k ≥ 2 be an integer, let G be a k-connected graph, and let
v1, v2, . . . , vk be distinct vertices of G. Prove that G has a cycle con-
taining all of v1, v2, . . . , vk. (Hint: use induction on k and Asst. 4 #5.
For the base case k = 2, you may assume the result from class, which
proves this for k = 2, so I only care about the inductive step. Be
careful: it is common to overlook a case in the induction step. )

SOLUTION. We are proceeding by induction on k and we are allowed
to assume the case k = 2. For the inductive step, assume k ≥ 3 and
that the result holds for k − 1. Since G is k-connected, we proved in
class that G is also (k − 1)-connected. Applying the inductive result,
there is a cycle C in G containing the k − 1 vertices v2, v3, . . . , vk.

If v1 is also a vertex of C, then we are obviously done: C is a cycle in
G containing all of v1, v2, . . . , vk. Therefore, we may assume v1 is not
a vertex of C.

If there are k vertices, say v2, v3, . . . , vk, u, in C, then using Ques-
tion 1 we can find k paths P1, P2, P3, . . . , Pk, each joining v1 to one of
v2, v3, . . . , vk, u and pairwise having only u in common. For each i, let
P ′
i be the subpath of Pi starting at v1 and ending at the first vertex of
Pi that is in C. Let u′i denote the vertex of P ′

i in C.

The k−1 vertices v2, v3, . . . , vk occur in some cyclic order vi2 , vi3 , . . . , vik−1

in C. This means that, for j = 2, 3, . . . , k−1, there is a vijvij+1
-path Cj

in C that does not contain any other one of v2, v3, . . . , vk. Also, there
is a vikvi2-path Ck that does not contain any other one of v2, v3, . . . , vk.
We note that C is the union C2 ∪ C3 ∪ · · · ∪ Ck.

Now the k vertices u′1, u
′
2, . . . , u

′
k are all in C, so some two of them, say

u′r and u′s, must be in the same Cj. We can now reroute Cj, from vij
through Cj to the nearer of u′r and u′s, then through P ′

r ∪ P ′
s through v1

to the other of u′r and u′s, and finally along Cj to vij+1
. Together with

the rest of C, we have a cycle through all of v1, v2, . . . , vk.

If C does not have k vertices, then C has precisely v2, v3, . . . , vk as its
vertices. Now we apply Question 1, but thinking of G as a (k − 1)-
connected graph, to get disjoint (except for v1) paths from v1 to each of
v2, v3, . . . , vk.

Now we take C without the edge between some two vi’s, say vrvs, and
replace the edge with the paths from vr and vs to v1. This gives a cycle
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in G containing all of v1, v2, . . . , vk.
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