CO342 ASSIGNMENT #6 SOLUTIONS

1. In the figure is an example of a graph G. The set of coloured edges represent three pairwise edge-disjoint av-paths in G. Illustrate the labelling algorithm and use it to produce a largest possible set of pairwise edge-disjoint av-paths in G.

An augmenting path for the original collection is in purple.

The resulting larger collection of edge-disjoint paths.

An augmenting path for the new collection is u, g, n, h, k, p, t, v (using the red edge nh) yielding the still larger collection.

The labelled vertices at the end of the labelling algorithm yields the 5-cut shown in dashed edges, one of each of the five non-black colours.

- 2. For each pair of positive integers k and ℓ , with $k > \ell$, give an example of a graph G having a pair of vertices u and v so that:
	- a largest set of pairwise edge-disjoint uv -paths in G has size k ; and
	- there is a vertex w of G , different from u and v , so that the largest set of pairwise edge-disjoint uv-paths in $G - w$ has size ℓ .

3. Let u, v , and w be distinct vertices in a graph G . Suppose there are k pairwise edge-disjoint uv-paths in G and there are k pairwise edgedisjoint vw-paths in G . Prove that there are k pairwise edge-disjoint uw-paths in G .

SOLUTION. Let E be a smallest set of edges so that u and w are in different components of $G - E$. Let K_u be the component of $G - E$ containing u and let K_w be the component of $G - E$ containing w.

If v is in K_u , then E is a set of edges so that v and w are in different components of $G-E$. Since there are k pairwise edge-disjoint vw-paths

in $G, |E| \geq k$, as required. A very similar argument applies if v is not in K_u .

4. In this exercise, we shall deduce the edge-disjoint version of Menger's Theorem from the internally disjoint version.

Internally-disjoint Menger's Theorem: For non-adjacent vertices u and v of G, let $\kappa_G(u, v)$ denote the size of a smallest uv-cut. Then there is a set P of pairwise internally-disjoint uv-paths in G so that $|\mathcal{P}| = \kappa_G(u, v).$

Edge disjoint version of Menger's Theorem: let u and v be vertices in a graph G. Then the maximum size of a set of pairwise edgedisjoint uv-paths in G is equal to the minimum size of a set F of edges of G so that $G - F$ has no uv-path.

SOLUTION. Create a new graph G' as follows:

- the vertex set of G' is u, v, and, for each edge e of G , a vertex w_e ;
- for each edge e of G incident with u , there is an edge uw_e in G' ;
- for each edge e of G incident with v, there is an edge vw_e in G' ;
- if e and e' are edges of G both incident with the vertex x of G , $x \neq u, v$, then w_e and w'_e are adjacent in G' .

We apply the internally-disjoint version of Menger's Theorem to G' , obtaining a set \mathcal{P}' of internally-disjoint uv-paths in G' and a set W' of vertices in G' so that: (a) u and v are in different components of $G'-W'$; and (b) $|\mathcal{P}'|=|W'|$.

With one small technical point, we claim that each uv-path in G' produces a uv-path in G. Let $(w_0, w_1, w_2, \ldots, w_k)$ be a uv-path P' in G', so $w_0 = u$ and $w_k = v$. There may be an edge, called a chord, $w_i w_j$ in G, with $j \geq i+2$, and we could get the shorter path $(w_0, w_1, \ldots, w_i, w_j, w_{j+1},$ \dots, w_k). Repeat as long as there is a chord of the current path. Let $P'^* = (v_0, v_1, v_2, \dots, v_\ell)$ be the resulting path.

The path P'^* corresponds to a path in G: start at u, and proceed successively along the edges v_1, v_2, \ldots, v_ℓ of G. Since each v_{i-1} is joined by an edge in G' to v_i , this implies that v_{i-1} and v_i have a common end

 u_i in G. (The argument is slightly different if $i = 1$, so $v_{i-1} = u$, or $i = \ell$, so $v_{\ell} = v$, but you should see the point.)

We note that, by choosing P'^* , no other v_j can also be incident in G with u_i , since this implies either $j < i - 1$ and $v_i v_i$ is an edge of G' or $j > i$ and $v_{i-1}v_j$ is an edge of G'. In either case, P'^* has a chord, a contradiction. Therefore, $(u, u_1, u_2, \ldots, u_{k-1}, v)$ is a uv-path P in G.

Thus, each path P' in \mathcal{P}' , which we may take to be chordless, produces a path P in G . An edge of P corresponds to an internal vertex of P' . Since the paths in \mathcal{P}' are pairwise internally-disjoint, the paths P are pairwise edge-disjoint.

Also, each vertex of G' in W' corresponds to an edge of G ; let E be the set of such edges. If there were a uv-path Q in $G - E$, then, by following the edges of Q , we obtain a uv-path Q' in $G'-W'$. Since there is no such path, we conclude that there is no uv-path in $G - E$. Since $\{P : P' \in \mathcal{P}'\}$ has the same size as \mathcal{P}' , and therefore as W', and therefore, as E, we see that this is the edge disjoint version of Menger's Theorem.