CO342 ASSIGNMENT #7

1. Let S be a finite set, let X be a subspace of 2° and let T be any subset
of S. Let Y consist of those elements y of X for which |y N T is even.

e Prove that Y is a subspace of X.

SOLUTION. [t suffices to show that @ € Y and thatY is closed
under ®. For the first, since X is a subspace of 2°, @ € X. Since
|oNT| =0, @€Y, as required.

For the second, we prove the following lemma (which we will use
again later).

Lemma. Let a,b, c be sets. Then

(a®b)Nel=|(anc)|+[(bNc)| (mod 2).

Proof.

r€(adb)Ne & x€adbandz ec
& x s in exactly one of a,b and x € ¢
& x s in exactly one of aNc and bNec
< ze(anc) @ (bne).

It follows that

(a@b)Nc] = [(anc)® (bNc)
= lanc+bNel—=2/(anec)n(bnNc)
= lancl+[bN¢| (mod 2). O

Using the lemma and the fact that both |y NT| and |y’ N'T| are
even, we conclude that y @y €Y, as required.

e Prove that dim(Y) > dim(X) — 1 and that equality holds if and
only if there is an element 3’ € X so that |y NT| is odd.

SOLUTION. IfY = X, then dim(Y) = dim(X) > dim(X) — 1.
Moreover, equality does not hold and every x € X is in'Y, so
|z NT| is even.



Therefore, we may assume Y # X. Since Y C X, we conclude
that there is an x € X \'Y. Since x ¢ Y, |t NT| is odd. If
€ X \Y, then also |2’ NT| is odd. Therefore, |(x @ 2') N T
is even (by the lemma above and the fact that both |x N'T| and
|2’ NT| are odd). It follows that x ® 2’ €Y.

In particular, every element of X \'Y is of the form y + x, with
y € Y. It follows that x extends a basis of Y to a basis of X, so
dim(X) = dim(Y) + 1.

2. Let G be a connected graph. The purpose of this exercise is to show
that dim(Z(G)) = |E(G)| — |[V(G)| + 1.
Let vy, vg, ..., v, be the vertices of G (so n = |[V(G)|). We shall con-
struct subspaces Zy, Z1, Zo, . . ., Zn_1 of 2P(@) so that:

o 7, =280,
e Z, 1 =2Z(G); and,
e forecachi=1,2,...,n—1, dim(Z;) = dim(Z,_,) — 1.

To do this, let E; be the set of edges incident with v; and let Z; denote
the subspace of Z;_; consisting of those elements z of Z;_; having |zNE;|
even.

e Use Question 1 to show that, for i = 1,2,...,n — 1, dim(Z;) =
dim(Z;_1) — 1. (Hint. If 1 <i <n —1, then there is a path P in
G from v; to v,. Show that E(P) € Z;,_y but E(P) ¢ Z;.)

SOLUTION. Question 1 shows that dim(Z;) > dim(Z;_,) — 1.
Equality will be established by finding an element of Z;_1 that is
not in Z;. Let P be a vyv,-path in G. Then exactly one edge of
E(P) is incident with each of v; and v,, while either 0 or 2 (both
even numbers) of the edges of P are incident with any other vertex

of G. Thus E(P) € Z;_y, but |E(P) N E;| is odd.
e Show that Z,,_; is in fact equal to Z(G).
SOLUTION. Letz € Z(G). Then each of the vertices vy, va, . . .,

Un_1, Uy 1S incident with an even number of edges in z; in particular
this is true for vy,ve,...,v,_1, showing z € Z, 1. We conclude

that Z(G) Q Zn—l-



For the reverse containment, let z € Z,_1. Then each of the ver-
tices vy, Vg, ..., Uy_1 1S tncident with an even number of edges in
z; this leaves the possibility that only v, s incident with an odd
number of edges in z. But this is impossible, since the number of
vertices incident with an odd number of edges in z is even. There-
fore, every vertex of G is incident with an even number of edges in
z, showing z € Z(G). Therefore, Z,_1 C Z(G). Combined with
the preceding paragraph, we deduce that Z,_1 = Z(G).

3. Let G be a connected graph and let T" be a spanning tree of G. For
each edge e of G not in T, the subgraph T + e contains a cycle zr(e).

e Show that the cycles zr(e), e € E(G) \ E(T), are linearly inde-
pendent.

SOLUTION. Let @ ae.zr(e) = @. If some o = 1, then
e€ E(G)\E(T)

e € zr(e) and is not in any other zp(e'). Therefore, e would be in

EBeeE(G)\E(T) aezr(e), a contradiction. Therefore, every a. is 0,

so the zp(e) are linearly independent.

e How many cycles zr(e) are there?

SOLUTION. There are |E(G)| edges in G, |E(T)| of which are
in T. Therefore, there are |E(G)| — |E(T)| cycles zr(e). Since
|E(T)| = |V(GQ)| — 1, there are |E(G)| — |V(G)| + 1 cycles zr(e).

e Use Question 2 to show that the z7(e), e € E(G) \ E(T), are a
basis for Z(G).

SOLUTION. By Question 2, dim(Z(G)) = |E(G)|—|V(G)|+1.
Since this is the number of linearly independent zr(e), the zr(e)
is a basis for Z(Q).

4. Let H be a graph so that every vertex of H has even degree. Prove
that either E(H) = @& or there are pairwise edge-disjoint cycles
C1,0s, ..., Cyin H so that H is the union C;UC,U- - -UCY, plus possibly
some isolated vertices. (The number £ is not important.) (Hint: show
H has a cycle Cy and use induction on H — E(Ch).

SOLUTION. If H has no edges, then we are done: H consists of
isolated vertices.



For the induction, assume that H has some edges. If H has no cycles,
then H is a forest and some component of H is a tree with at least
one edge. This component has a vertex that has degree 1 in H; this is
impossible as 1 is odd. Therefore, H has a cycle Cy. Now H—E(CY) is
a graph in which every vertex has even degree and H— E(CY) has fewer
edges than H has. By induction, H—FE(CY) is the union of edge-disjoint
cycles Cy,Cs, ..., Cy, plus isolated vertices. Therefore, H is the union
of the edge-disjoint cycles C,Cs, ..., Cy, plus isolated vertices.



