
CO342 ASSIGNMENT #7

1. Let S be a finite set, let X be a subspace of 2S and let T be any subset
of S. Let Y consist of those elements y of X for which |y ∩ T | is even.

• Prove that Y is a subspace of X.

SOLUTION. It suffices to show that ∅ ∈ Y and that Y is closed
under ⊕. For the first, since X is a subspace of 2S, ∅ ∈ X. Since
|∅ ∩ T | = 0, ∅ ∈ Y , as required.

For the second, we prove the following lemma (which we will use
again later).

Lemma. Let a, b, c be sets. Then

|(a⊕ b) ∩ c| ≡ |(a ∩ c)|+ |(b ∩ c)| (mod 2) .

Proof.

x ∈ (a⊕ b) ∩ c ⇔ x ∈ a⊕ b and x ∈ c
⇔ x is in exactly one of a, b and x ∈ c
⇔ x is in exactly one of a ∩ c and b ∩ c
⇔ x ∈ (a ∩ c)⊕ (b ∩ c) .

It follows that

|(a⊕ b) ∩ c| = |(a ∩ c)⊕ (b ∩ c)|
= |a ∩ c|+ |b ∩ c| − 2|(a ∩ c) ∩ (b ∩ c)|
≡ |a ∩ c|+ |b ∩ c| (mod 2) . 2

Using the lemma and the fact that both |y ∩ T | and |y′ ∩ T | are
even, we conclude that y ⊕ y′ ∈ Y , as required.

• Prove that dim(Y ) ≥ dim(X) − 1 and that equality holds if and
only if there is an element y′ ∈ X so that |y′ ∩ T | is odd.

SOLUTION. If Y = X, then dim(Y ) = dim(X) ≥ dim(X)− 1.
Moreover, equality does not hold and every x ∈ X is in Y , so
|x ∩ T | is even.



Therefore, we may assume Y 6= X. Since Y ⊆ X, we conclude
that there is an x ∈ X \ Y . Since x /∈ Y , |x ∩ T | is odd. If
x′ ∈ X \ Y , then also |x′ ∩ T | is odd. Therefore, |(x ⊕ x′) ∩ T |
is even (by the lemma above and the fact that both |x ∩ T | and
|x′ ∩ T | are odd). It follows that x⊕ x′ ∈ Y .

In particular, every element of X \ Y is of the form y + x, with
y ∈ Y . It follows that x extends a basis of Y to a basis of X, so
dim(X) = dim(Y ) + 1.

2. Let G be a connected graph. The purpose of this exercise is to show
that dim(Z(G)) = |E(G)| − |V (G)|+ 1.

Let v1, v2, . . . , vn be the vertices of G (so n = |V (G)|). We shall con-
struct subspaces Z0, Z1, Z2, . . . , Zn−1 of 2E(G) so that:

• Z0 = 2E(G);

• Zn−1 = Z(G); and,

• for each i = 1, 2, . . . , n− 1, dim(Zi) = dim(Zi−1)− 1.

To do this, let Ei be the set of edges incident with vi and let Zi denote
the subspace of Zi−1 consisting of those elements z of Zi−1 having |z∩Ei|
even.

• Use Question 1 to show that, for i = 1, 2, . . . , n − 1, dim(Zi) =
dim(Zi−1)− 1. (Hint. If 1 ≤ i ≤ n− 1, then there is a path P in
G from vi to vn. Show that E(P ) ∈ Zi−1 but E(P ) /∈ Zi.)

SOLUTION. Question 1 shows that dim(Zi) ≥ dim(Zi−1) − 1.
Equality will be established by finding an element of Zi−1 that is
not in Zi. Let P be a vivn-path in G. Then exactly one edge of
E(P ) is incident with each of vi and vn, while either 0 or 2 (both
even numbers) of the edges of P are incident with any other vertex
of G. Thus E(P ) ∈ Zi−1, but |E(P ) ∩ Ei| is odd.

• Show that Zn−1 is in fact equal to Z(G).

SOLUTION. Let z ∈ Z(G). Then each of the vertices v1, v2, . . . ,
vn−1, vn is incident with an even number of edges in z; in particular
this is true for v1, v2, . . . , vn−1, showing z ∈ Zn−1. We conclude
that Z(G) ⊆ Zn−1.
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For the reverse containment, let z ∈ Zn−1. Then each of the ver-
tices v1, v2, . . . , vn−1 is incident with an even number of edges in
z; this leaves the possibility that only vn is incident with an odd
number of edges in z. But this is impossible, since the number of
vertices incident with an odd number of edges in z is even. There-
fore, every vertex of G is incident with an even number of edges in
z, showing z ∈ Z(G). Therefore, Zn−1 ⊆ Z(G). Combined with
the preceding paragraph, we deduce that Zn−1 = Z(G).

3. Let G be a connected graph and let T be a spanning tree of G. For
each edge e of G not in T , the subgraph T + e contains a cycle zT (e).

• Show that the cycles zT (e), e ∈ E(G) \ E(T ), are linearly inde-
pendent.

SOLUTION. Let
⊕

e∈E(G)\E(T )

αezT (e) = ∅. If some αe = 1, then

e ∈ zT (e) and is not in any other zT (e′). Therefore, e would be in⊕
e∈E(G)\E(T ) αezT (e), a contradiction. Therefore, every αe is 0,

so the zT (e) are linearly independent.

• How many cycles zT (e) are there?

SOLUTION. There are |E(G)| edges in G, |E(T )| of which are
in T . Therefore, there are |E(G)| − |E(T )| cycles zT (e). Since
|E(T )| = |V (G)| − 1, there are |E(G)| − |V (G)|+ 1 cycles zT (e).

• Use Question 2 to show that the zT (e), e ∈ E(G) \ E(T ), are a
basis for Z(G).

SOLUTION. By Question 2, dim(Z(G)) = |E(G)|−|V (G)|+1.
Since this is the number of linearly independent zT (e), the zT (e)
is a basis for Z(G).

4. Let H be a graph so that every vertex of H has even degree. Prove
that either E(H) = ∅ or there are pairwise edge-disjoint cycles
C1, C2, . . . , Ck inH so thatH is the union C1∪C2∪· · ·∪Ck, plus possibly
some isolated vertices. (The number k is not important.) (Hint: show
H has a cycle C1 and use induction on H − E(C1).

SOLUTION. If H has no edges, then we are done: H consists of
isolated vertices.
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For the induction, assume that H has some edges. If H has no cycles,
then H is a forest and some component of H is a tree with at least
one edge. This component has a vertex that has degree 1 in H; this is
impossible as 1 is odd. Therefore, H has a cycle C1. Now H−E(C1) is
a graph in which every vertex has even degree and H−E(C1) has fewer
edges than H has. By induction, H−E(C1) is the union of edge-disjoint
cycles C2, C3, . . . , Ck, plus isolated vertices. Therefore, H is the union
of the edge-disjoint cycles C1, C2, . . . , Ck, plus isolated vertices.
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