CO342 ASSIGNMENT #8 DUE: IN CLASS WEDNESDAY 6 JULY 2011

- 1. Let $n \geq 3$ be an integer. Show that every element of $\mathcal{Z}(K_n)$ is a linear combination of edge-sets of 3-cycles in the complete graph K_n with n vertices.
- 2. Let G be a graph and let H be a 2-connected subgraph of G. Let P be a path in G with length at least one and such that $P \cap H$ consists of just the ends of P. Prove that $H \cup P$ is 2-connected.
- 3. Let G be a graph and let H be a 2-connected subgraph of G. Let P be a path in G with length at least one and such that $P \cap H$ consists of just the ends of P. Prove that $\dim(\mathcal{Z}(H \cup P)) = 1 + \dim(\mathcal{Z}(H))$.
- 4. A cycle double cover of a graph G is a sequence (C_1, C_2, \ldots, C_k) of cycles in G so that every edge of G appears in exactly two of the C_i . Suppose (C_1, C_2, \ldots, C_k) is a cycle double cover of a graph G.
 - (a) Show that $\bigoplus_{i=1}^{k} E(C_i) = \emptyset$.
 - (b) Suppose there is a t with 1 < t < k so that $\bigoplus_{i=1}^{t} E(C_i) = \emptyset$. Prove:
 - $\bigoplus_{i=t+1}^{k} E(C_i) = \emptyset$; and
 - if C is a cycle with one edge in C_1 and another edge in C_k , show that E(C) is not in the span of $E(C_1), E(C_2), \ldots, E(C_k)$.
- 5. Let H be a 2-connected subgraph of a graph G and let P be a path in G so that:
 - (a) P has both ends in H;
 - (b) P is otherwise disjoint from H; and
 - (c) $G = H \cup P$.

Let (C_1, C_2, \ldots, C_k) be a cycle double cover of G so that $\{C_1, C_2, \ldots, C_k\}$ spans the cycle space of G. If P is contained in both C_1 and C_2 , but not in any other C_i , prove that $\{C_3, C_4, \ldots, C_k\}$ spans the cycle space of H.