
CO342 ASSIGNMENT #8
DUE: IN CLASS WEDNESDAY 6 JULY 2011

1. Let n ≥ 3 be an integer. Show that every element of Z(Kn) is a linear
combination of edge-sets of 3-cycles in the complete graph Kn with n
vertices.

SOLUTION. It suffices to show that every cycle in Kn is a linear
combination of 3-cycles. We do this on the length n of the cycle C. If
n = 3, then C is a 3-cycle, then obviously C is a linear combination of
3-cycles. If n > 3, then let C = (x0, x1, x2, . . . , xn−1, x0). Since n ≥ 4,
x0x2 is not an edge of C. Let T be the 3-cycle (x0, x1, x2, x0). Then
E(C)⊕E(T ) is the edge-set of the cycle (x0, x2, x3, . . . , xn−1, x0), which
has length n − 1. By induction, it is a linear combination of 3-cycles,
which, together with T , yields a linear combination of 3-cycles that
adds up to C.

2. Let G be a graph and let H be a 2-connected subgraph of G. Let P be
a path in G with length at least one and such that P ∩ H consists of
just the ends of P . Prove that H ∪ P is 2-connected.

SOLUTION. Since H is 2-connected, |V (H)| ≥ 3; therefore, |V (H ∪
P )| ≥ |V (H)| ≥, as required for the first part of showing H ∪ P is
2-connected.

For the main component of 2-connection, let v be any vertex of H ∪P .
If v is in H, then H − v is connected. If w is any vertex of P that is
not in H, then there are two disjoint paths in H ∪P from w to vertices
in H, so at least one of these is still present in (H ∪ P ) − v, showing
(H ∪ P )− v is connected.

A similar argument holds is v is in P but not inH. This shows that (H∪
P )− v is connected in all cases and, therefore, H ∪ P is 2-connected.

3. Let G be a graph and let H be a 2-connected subgraph of G. Let P be
a path in G with length at least one and such that P ∩ H consists of
just the ends of P . Prove that dim(Z(H ∪ P )) = 1 + dim(Z(H)).

SOLUTION. Let Q be any path in H joining the ends of P and
let C∗ be the cycle P ∪ Q. Clearly, E(C∗) is in Z(H ∪ P ) \ Z(H), so
dim(Z(H ∪ P )) ≥ 1 + dim(Z(H)).



Let C be any cycle in H ∪ P . Observe that either P ⊆ C or C ⊆ H.
If P ⊆ C, then E(C) ⊕ E(C∗) has no edge in P and, therefore, is in
Z(H). Therefore, for every cycle C in H ∪P is either E(C) is in Z(H)
or E(C) ⊕ E(C∗) ∈ Z(H). Thus, every cycle in H ∪ P is a linear
combination of C∗ and something in Z(H), showing that everything in
the cycle space of H ∪ P has this property.

It follows that we need only add C∗ to a basis of Z(H) to get a spanning
set for Z(H ∪P ). Thus, dim(Z(H ∪P )) ≤ 1 + dim(Z(H). Combining
this with our earlier observation, dim(Z(H ∪ P )) = 1 + dim(Z(H)).

4. A cycle double cover of a graph G is a sequence (C1, C2, . . . , Ck) of
cycles in G so that every edge of G appears in exactly two of the Ci.
Suppose (C1, C2, . . . , Ck) is a cycle double cover of a graph G.

(a) Show that
⊕k

i=1E(Ci) = ∅.

SOLUTION. Each edge of G is in exactly two of C1, C2, . . . , Ck

and so is not in
⊕k

i=1E(Ci). Therefore,
⊕k

i=1E(Ci) = ∅.

(b) Suppose there is a t with 1 < t < k so that
⊕t

i=1E(Ci) = ∅.
Prove:

•
⊕k

i=t+1E(Ci) = ∅; and

SOLUTION.

k⊕
i=t+1

E(Ci) =

(
k⊕

i=1

E(Ci)

)
⊕

(
t⊕

i=1

E(Ci)

)
= ∅⊕∅ = ∅ .

• if C is a cycle with one edge in C1 and another edge in Ck,
show that E(C) is not in the span of E(C1), E(C2), . . . , E(Ck).

SOLUTION. Let A = E(C1) ∪ E(C2) ∪ · · · ∪ E(Ct). Since⊕t
i=1E(Ci) = ∅ and (C1, C2, . . . , Ck) is a cycle double cover

ofG, every edge of A is in precisely two of C1, C2, . . . , Ct; every
edge of E(G) \A is in precisely two of Ct+1, Ct+2, . . . , Ck and
E(Ct+1) ∪ E(Ct+2) ∪ · · · ∪ E(Ck) = E(G) \ A.
If E(C) is in the span of E(C1), E(C2), . . . , E(Ck), then there
are scalars αi so that E(C) =

⊕k
i=1 αiE(Ci). Let z1 =⊕t

i=1 αiE(Ci) and let z2 =
⊕k

i=t+1 αiE(Ci). Evidently, E(C) =
z1⊕z2, z1 ⊆ A, and z2 ⊆ E(G)\A. Thus, E(C) is the disjoint
union of z1 and z2.
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Since C has an edge in C1, E(C) ∩ A 6= ∅; likewise, E(C) ∩
(E(G) \ A) 6= ∅. It follows that z1 is a proper, non-empty,
subset of E(C). But every proper subset of E(C) does not
contain the edge-set of any cycle, while the non-empty element
z1 of the cycle space of G contains the edge-set of a cycle.
This is a contradiction, showing that E(C) cannot be a linear
combination of C1, C2, . . . , Ck.

5. Let H be a 2-connected subgraph of a graph G and let P be a path in
G so that:

(a) P has both ends in H;

(b) P is otherwise disjoint from H; and

(c) G = H ∪ P .

Let (C1, C2, . . . , Ck) be a cycle double cover ofG so that {C1, C2, . . . , Ck}
spans the cycle space of G. If P is contained in both C1 and C2, but
not in any other Ci, prove that {C3, C4, . . . , Ck} spans the cycle space
of H.

SOLUTION. We remark that no edge of P is in any of C3, C4, . . . , Ck,
so these cycles are all in H.

Let z ∈ Z(H). Then Z ∈ Z(G), so there are scalars αi for which
z =

⊕k
i=1 αiE(Ci). Since no edge of P is in z, α1 = α2. If these are

both 0, then z =
⊕k

i=3 αiE(Ci), so z is in the span of C3, C4, . . . , Ck as
required.

On the other hand, if both α1 and α2 are 1, then we note that
⊕k

i=1E(Ci) =

∅. Therefore, E(C1)⊕ E(C2) =
⊕k

i=3E(Ci). Now we have

z = E(C1)⊕ E(C2)⊕

(
k⊕

i=3

αiE(Ci)

)

=

(
k⊕

i=3

E(Ci)

)
⊕

(
k⊕

i=3

αiE(Ci)

)

=

(
k⊕

i=3

(1 + αi)E(Ci)

)
,

as required.
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