
THIRD BATCH OF HOMEWORK PROBLEMS

C1. For n, k ∈ N, let q(n, k) be the number of connected graphs with k edges and vertex-set

{1, 2, . . . , n}; also let Qn(t) =
∑n(n−1)/2

k=0 q(n, k)tk.
(a) Explain an efficient algorithm for computing Qn(t). (Hint: if the connected components of
A-structures are B-structures, then A(x) = exp(B(x)).)
(b)* If you know Maple or some other computer algebra software, write some code and crank out
Q8(t).
(Or do it by pencil and paper! ;-)

C2. Let T ∈ RX be a rooted labelled tree (RLT) with vertex-set X. A vertex of T is said to be
even or odd depending on whether it has an even or an odd number of children. Let e(T ) and
o(T ) be the number of even or odd vertices of T , repectively. Let KX be the subset of RX defined
by the following property: T is in KX if and only if for each vertex of T , all of its children have
the same parity (all are even, or all are odd). This defines a subclass K of R. Derive a system of
functional equations which implicitly defines the bivariate exponential generating function

K(x, y) :=
∞∑
n=0

1

n!

(∑
T∈Kn

xe(T )yo(T )

)
.

[Hint: first solve the similar problem in the easier case of the the class R.]

C3. A clique-tree is a connected graph such that each edge is in a unique maximal complete
subgraph, and each cycle is contained in a complete subgraph. Equivalently, it is a connected
graph in which each block (2-connected component) is a complete subgraph. Determine the
number of clique-trees with vertex-set {1, 2, . . . , n}, for each n ∈ N.

C4. Refer to pages 5 to 7 of the notes on sl(2).
(a) Show that P (V ⊗W ; t) = P (V ; t) · P (W ; t).
(b) Determine the multiplicities of the irreducible representations in U(k)⊗U(`) for all k, ` ∈ N.
(c) Determine the multiplicities of the irreducible representations in the Boolean representations
U(1)⊗n for all n ∈ N.

C5. Let f =
∑

α cαx
α be an infinite Z-linear sum of monomials. Show that if f is invariant under

all permutations in §P then f is invariant under all permutations in §∞.

C6. This concerns power-sum symmetric functions.
(a) Prove that P (−t) = E ′(t)/E(t).
(b) Deduce that for all partitions λ, ω(pλ) = (−1)|λ|−`(λ)pλ.

C7. From the identity P (−t) = E ′(t)/E(t) for the generating functions of one-part power-sum
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and elementary symmetric functions, prove that for all n ∈ N:

pn = det



e1 1 0 0 . . . 0
2e2 e1 1 0 . . . 0
3e3 e2 e1 1 . . . 0
...

...
...

...
...

(n− 1)en−1 en−2 en−3 en−4 . . . 1
nen en−1 en−2 en−3 . . . e1


.

C8. For each n ∈ N, let p(n) be the number of partitions of n and let c(n) be the number of
self-conjugate partitions of n. Give a formula for the characteristic polynomial det(tI − ω) of the
linear transformation ω : Λn → Λn in terms of p(n) and c(n).

C9. Prove Proposition 18 in the symmetric functions notes, the dual form of the Jacobi-Trudi
Formula: sλ = det(eλ′i−i+j).

C10. Let λ and µ be partitions such that Fµ ⊆ Fλ. A skew tableau of shape λ/µ is a function
T : Fλ r Fµ → P which is weakly increasing from left to right along rows, and strictly increasing
from top to bottom along columns. The skew Schur function of shape λ/µ is sλ/µ :=

∑
T x

T , with
the sum over all skew tableau of shape λ/µ.
(a) Sketch a proof that sλ/µ is a symmetric function. (You can be brief, but not too brief.)
(b) Derive a formula for sλ/µ as a polynomial in the complete symmetric functions.
(c) State, without proof, a formula for sλ/µ as a polynomial in the elementary symmetric functions.
(d) Determine the action of ω on skew Schur functions.
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