C&O 444/644

Assignment 2

- 1. If X is a connected arc-transitive graph, prove that any proper block for Aut(X) induces a coclique. [If X is 2-arc transitive and not bipartite, prove that any two vertices in a proper block are at distance at least three in X.]
- 2. Show that a group G acts 2-arc-transitively on a connected graph X with minimu valency two if and only if it acts transitively, and for any vertex u the stabilizer G_u acts 2-transitively on the set of neighbors of u.
- 3. If M and N are two $m \times n$ matrices over a finite field \mathbb{F} , then $\operatorname{rk}(M) = \operatorname{rk}(N)$ is and only if there are invertible matrices A and B such that $N = AMB^T$. (Believe me.) Define a graph whose vertices are the $m \times n$ matrices over \mathbb{F} , where two matrices are adjacent if and only if their difference has rank one. Prove that this graph is a Cayley graph and that it is distance transitive.
- 4. Prove that a graph that is triangle-free and distance transitive is 2-arc transitive.
- 5. Prove that the edge connectivity of an edge-transitive graph is equal to its minimum valency (or present a counterexample).
- 6. If X is a graph, let X[m] denote the graph we get by replacing each vertex of X by a coclique of size m and adding all possible edges between the cocliques corresponding to adjacent vertices. (So $K_2[m] \cong K_{m,m}$.) If X is vertex transitive and $m = |\operatorname{Aut}(X)_1|$, prove that X[m] is a Cayley graph for $\operatorname{Aut}(X)$.
- 7. A circular ladder graph is a Cartesian product $K_2 \square C_n$. Show that any circular ladder graph is a Cayley graph. If n is odd, show that $K_2 \square K_n$ is a circulant.
- 8. Determine the core of a circular ladder graph.
- 9. The Möbius ladder M(2n) is constructed from the product $K_2 \square P_n$ by addin the edges ((0, 1), (1, n)) and (1, 1), (0, n). Show that it is a circulant.
- 10. Determine the cores of the Möbius ladders.

- 11. If X is vertex transitive, prove that the permutation rank of $Aut(X^{\bullet})$ is less than or equal to the permutation rank of Aut(X).
- 12. Suppose Y and Z are graphs and f is a homomorphism from Y to Z. Show that if Z is cubelike, there is a homomorphism \hat{f} from $\mathbb{Z}_2(Y)$ to Z which is \mathbb{Z}_2 -linear.
- 13. The folded *d*-cube is the graph on 2^{d-1} vertices that we get by identifying antipodal vertices in the *d*-cube. Prove that the folded (d + 1)-cube is isomorphic to the Cayley graph $X(\mathbb{Z}_2^d, \{e_1, \ldots, e_d, e_1 + \cdots + e_d\})$.
- 14. Let B be the incidence matrix of a graph, viewed as a matrix over \mathbb{Z}_2 . Show that there are binary vectors a and b such that for each r at least one of $(a^T B)_r$ and $(b^T B)_r$ is not zero, if and only if X is 4-colorable.