PMATH 145 Assignment 4

Patrick Ingram

Due November 3 at 12:30PM

Problem 1. Suppose that you compute gcd(a, b) using the Euclidean algorithm, where b > a > 0 are integers, and you get remainders $a = r_0, r_1, ...$ That is, your calculation looks like this:

$$b = q_1 a + r_1$$

$$a = q_2 r_1 + r_2$$

$$\vdots$$

$$n-2 = q_n r_{n-1} + r_n,$$

r

where $r_n = \text{gcd}(a, b)$. Show that for each j, $r_{j+2} < \frac{1}{2}r_j$. Use this to show that the Euclidean algorithm always computes gcd(a, b) in at most $\log_2(b)$ steps (when b > a > 0). This means that it is a polynomial-time algorithm.

Problem 2. Suppose that Alice posts the public RSA key m = 713, e = 313 on her website, and Bob sends her the three-part (encrypted) message: 110, 676, 110. What's he trying to say? (For this problem, I converted the original message into numbers using $A \rightarrow 11$, $B \rightarrow 12$, $C \rightarrow 13$, ...).

Problem 3. This time Alice has posted the key m = 7081 and e = 1789, and Bob sends 5192, 2604, 4222. What was the message (now the original message was broken up into blocks of two letters, using the system above, e.g., AD \rightarrow 1114).

The following list of primes up to 100 might help you with factoring: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.