
MATH 145 Extra Questions

Patrick Ingram

This set of questions is supposed to give you some idea of what sorts of
things to expect on the final exam. The number of questions below does not
reflect the length of the actual final exam (this list would take anyone more than
2.5 hours). You should also include the assignments and midterm in your list of
questions to look at, as well as the exercises in the sections of the notes that we
covered. The emphasis in this set of problems is biased a little more towards the
end of the course, since the assignments and midterm covered earlier material.
The final exam will be comprehensive, covering the entire course.

Some general tips on studying for finals: it’s usually a good idea to spread
your studying out over time. It’s not possible, for most people, to concentrate
on one topic for several hours at a time, so the only way to really effectively
review things is to do a small amount of studying every day. This also gives
you the option of studying one subject as a break from studying others. Of
course, it’s also important to take real breaks. In preparing for the final exam,
it is beneficial for you to attempt these problems in an exam-like setting (i.e.,
without looking things up, or consulting other people). It’s easy to convince
yourself that you know how to do something when someone else explains it, but
this is not a good indicator of how you’ll do on the final.

Problem 1. i. Compute gcd(156400, 89148), and find integers x, y such that

156400x+ 89148y = gcd(156400, 89148).

ii. Compute g(x) = gcd(x4 − 2x3 − 5x2 + 4x+ 6, x4 − 3x3 + 3x2 + 6x− 10),
and find polynomials s(x), t(x) ∈ Q[x] such that

(x4 − 2x3 − 5x2 + 4x+ 6)s(x) + (x4 − 3x3 + 3x2 + 6x− 10)t(x) = g(x).

Problem 2. Prove the Chinese Remainder Theorem for polynomials. That is,
if F is a field, and f(x), g(x) ∈ F [x] satisfy gcd(f(x), g(x)) = 1, prove that for
any a1(x), a2(x) ∈ F [x] there is a b(x) ∈ F [x] such that{

s(x) ≡ a1(x) (mod f)
s(x) ≡ a2(x) (mod g)

}
if and only if

s(x) ≡ b(x) (mod fg).

Furthermore, prove that b(x) is unique modulo fg.
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Problem 3. Compute the least non-negative residue of

i. 72222 (mod 11).

ii. 52010 (mod 4321).

iii. n4n+8 + n2 − 1 (mod 5) (your answer will be in the form of a congruence
condition on n).

Problem 4. Explain how the RSA cryptosystem works, in as much detail as
possible. Explain, in particular, why it is secure (or, at least, thought to be
secure).

Problem 5. Let F be a field, let f(x) ∈ F [x] be a polynomial, and consider
the commutative ring F [x]/(f). Prove that for any [g] ∈ F [x]/(f), [g] is a unit
(has a multiplicative inverse) if and only if gcd(f(x), g(x)) = 1.

Problem 6. The Lucas numbers Ln are defined by L0 = 2, L1 = 1, and

Ln = Ln−1 + Ln−2.

i. If τ = (1 +
√

5)/2 is the golden ratio, prove that

Ln = τn + (−τ)−n

for all n (it might be useful to note that τ2 − τ − 1 = 0).

ii. Recall that the Fibonacci numbers are defined by F0 = 0, F1 = 1, and

Fn = Fn−1 + Fn−2.

Prove that, for all n, Ln = Fn+1 + Fn−1.

iii. Prove that

Fn =
τn − (−τ)−n

√
5

.

iv. Prove that L2
n − 5F 2

n = 4(−1)n, for all n, and calculate the limit

lim
n→∞

Ln

Fn
.

Problem 7. Let a, b ∈ Z be positive integers, with gcd(a, b) = 1. We know
that, for any n ∈ Z, there is a solution x, y ∈ Z to ax + by = n. Prove that if
n ≥ (a− 1)(b− 1), then there is a solution with x, y ≥ 0.

Problem 8. Find a non-zero polynomial f(x) ∈ Q[x] such that f(
√

5+
√

6) = 0.
Show that this polynomial is irreducible.

Problem 9. Suppose that m ∈ Z is a product of exactly two distinct prime
numbers, that m = 20717933, and that ϕ(m) = 20706588. Find m.
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Problem 10. Let a ∈ C be a root of some irreducible polynomial f(x) ∈ Q[x]
of degree at least two. Show that a is not a rational number. Give as much
detail as possible.

Problem 11. The commutative ring Z3[x]/(x2 − 1) has 9 elements. Write out
a multiplication and addition table for this ring. Is Z3[x]/(x2 − 1) a field?

Problem 12. Recall that σ(n) =
∑

d|n d is the sum of the divisors of n.

i. If n = pe1
1 p

e2
2 · · · p

ek

k , where the pi are distinct prime numbers, and ei ≥ 1,
give a formula (in terms of the pi and ei) for σ(n). Give a full justification
for your formula (you may assume that σ is a multiplicative function).

ii. If p and q are distinct primes with pq = 150947 and σ(pq) = 151776, find
p and q.

Problem 13. i. Prove that if n ∈ Z satisfies n ≡ 5 (mod 6), then there is a
prime p | n with p ≡ 5 (mod 6).

ii. Prove that there are infinitely many primes p ≡ 5 (mod 6).

Problem 14. Find the remainder when 2171513

is divided by 13.

Problem 15. Let a1, a2, ... be a sequence of positive integers such that

am | am+1

∞∑
i=m+1

1
ai
<

1
am

and
am+1 > am

m

for all m ≥ 1. Prove that
∑∞

m=1
1

am
is a transcendental number.

Problem 16. Construct a field with 4 elements. Write down the addition and
multiplication table for this field.

Problem 17. i. Let F be a field, and let f(x), g(x) ∈ F [x]. Prove that if
f(a) = 0 and g(a) = 0, and h(x) = gcd(f(x), g(x)), then h(a) = 0.

ii. Prove that if f(x) ∈ Q[x] has a root in R which is also a critical point (so
f(a) = f ′(a) = 0 for some real number a), then f(x) is not irreducible in
Q[x]. (Note: the root might not be in Q!)

Problem 18. Find all solutions to

x2 + 13 ≡ 56 (mod 221)

(your answer should be in the form of congruence classes modulo 221).

Problem 19. Show that the following polynomials are irreducible in Z[x].
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i. x4 + 3x3 − 27x2 + 15x+ 21

ii. x3 + x2 − 2x+ 7

iii. x4 + x3 + x2 + x+ 1 (hint: let x = y + 1)

Problem 20. Let p be a prime.

i. Show that the only elements of Zp which are their own multiplicative
inverses are 1 and −1.

ii. Prove Wilson’s Theorem, that

(p− 1)! ≡ −1 (mod p).

iii. Let F be a finite field. State and prove a generalization of Wilson’s The-
orem for F . (That is, write down some fact about F which is the same
as the congruence above if F = Zp, and then prove that fact for all finite
fields.)

Problem 21. The Mersenne sequence is the sequence of integers Mn = 2n− 1.

i. Prove that k | n implies Mk |Mn.

ii. Prove that if Mn is prime, then n is prime.

iii. Show that the converse of part ii is not true (so, part ii is not an “if and
only if”).

iv. For a prime p, define a function vp on the positive integers such that vp(n)
is the largest e ≥ 0 such that pe | n (in other words, if n = pem, where
p - m, then vp(n) = e). Show that

vp(ab) = vp(a) + vp(b)

and
vp(a+ b) ≥ min{vp(a), vp(b)}.

v. Show that if p |Mn, then for any integer m ≥ 1, gcd(m, p) = 1 if and only
if

vp(Mmn) = vp(Mn).

Problem 22. i. Show that every integer of the form

2n18 − 10n12 + n6 + 7

is composite, for n ≥ 1.

ii. Show that every integer of the form

n3 + n2 + 4

is composite, for n ≥ 1.
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Problem 23. Suppose that you have a certain number of apples. When you
try to divide them among 7 people, and you give them each an equal number,
there are 5 left over. One of the people leaves (without taking any apples),
and you try again to divide them out equally. This time there are 2 left over.
Finally, one more person leaves (without taking any apples) and you try again.
This time there are 4 left over. What is the smallest (positive) number of apples
which makes this scenario possible?
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