Math 146 Review Exercises (no submission) Midterm Exam: Monday, February 07, 2011 Time: 7:00-9:00 pm Location: CPH 3602 for A-M and 3604 for N-Z

note: Two files are included in the Supplementary Notes folder. Please download them to complete your note-taking. The midterm exam will cover materials up to and including those on Friday, Feb 4.

1. (a) Give the five conditions on \oplus for (V, \oplus, \odot) to be a vector space over a field \mathbb{F} .

(b) Let $V=\{u\in\mathbb{R}\,|\,u>0\}$ be the set of all positive real numbers and let \oplus be defined by

$$u \oplus v = uv$$
 for all $u, v \in V$,

i.e., \oplus is the usual multiplication. Show that V and \oplus satisfy the five conditions.

2. Solve the linear system over the complex field \mathbb{C} :

x_1	_	$2x_2$	+	$2x_3$	=	-1
$2x_1$	+	x_2	+	x_3	=	3
x_1	+	$0x_2 +$		ix_3	=	4.

3. Let V be the vector space of all functions from \mathbb{R} to \mathbb{R} , with the standard operations. Show whether or not $\{f \in V \mid f(x+1) = 2f(x) \text{ for all } x\}$ is a subspace of V.

4. Let $\{v_1, v_2, v_3\}$ be a linearly independent subset of a vector space over \mathbb{C} . Determine all scalars λ with which $\{v_1 - \lambda v_2, \lambda v_1 + v_2, v_1 + v_2 + v_3\}$ is linearly independent.

5. Determine if the given statement is true or false.

- (i) The emptyset is a subspace of \mathbb{R}^2 .
- (ii) There exists a vector space with 6 elements.
- (iii) For every subset S of a vector space V, $\operatorname{span}(S) = \operatorname{span}(\operatorname{span}(S))$.
- (iv) The union of subspaces is a subspace.
- (v) A subset of a linearly independent set is always linearly independent.
- (vi) If $S \subset T$, then $span(S) \subset span(T)$.
- (vii) $span(S) \subset span(T)$ then $S \subset T$.
- (viii) The dimension of the space of all symmetric matrices in $M(4 \times 4, F)$ is 10.
- (ix) The dimension of \mathbb{R} over \mathbb{Q} exceeds 4.
- (x) The dimension of $\mathcal{F}(\{1,2,3,4\},F)$ is 4.