Math 147 Assignment 1 - due Friday, September 24, 2010 - 11:30 a.m.

- 1. Prove $|x^3 2x + 1| \leq \frac{5}{4}|x 1|$ if -1 < x < 0.
- 2. Let $f : \mathbb{N} \to \mathbb{N}$ be defined by f(1) = 5, f(2) = 13 and for $n \ge 3$, f(n) = 2f(n-2) + f(n-1).

Prove $f(n) = 3 \cdot 2^n + (-1)^n$ for all $n \in \mathbb{N}$.

- 3. Prove that $1^3 + 2^3 + \dots + n^3 = (1 + 2 + \dots + n)^2$ for each $n \in \mathbb{N}$. (You may use the fact that $1 + 2 + \dots + n = \frac{n(n+1)}{2}$).
- 4. Suppose $x_1 = \sqrt{2}$ and $x_{n+1} = \sqrt{2 + x_n}$ for all $n \in \mathbb{N}$. Show by induction that $x_n < x_{n+1} < 2$ for all $n \in \mathbb{N}$.
- 5. Suppose x, y, a, b are real numbers and $\epsilon > 0$. Suppose $|x-a| < \epsilon$ and $|y-b| < \epsilon$. Prove $|xy - ab| < \epsilon(|a| + |b|) + \epsilon^2$.
- 6. If $m, n \in \mathbb{Z}, n \neq 0$ show that $|\sqrt{3} \frac{m}{n}| \ge \frac{1}{5n^2}$. (Hint: Rationalize the numerator and use the irrationality of $\sqrt{3}$.)
- 7. Given any real numbers x, y, with x < y, prove there is an irrational number z with x < z < y. (You may use (without proof) the fact that if r > 0 then there is some $n \in \mathbb{N}$ with $\frac{1}{n} < r$.)

Bonus: The arithmetic and geometric means of $a_1, \ldots, a_n \ge 0$ are given by

$$A_n = \frac{a_1 + \dots + a_n}{n}$$
 and $G_n = \sqrt[n]{a_1 \dots a_n}$

Suppose $a_1 \leq A_n$ and $a_2 \geq A_n$. Put $\bar{a}_1 = A_n$ and $\bar{a}_2 = a_1 + a_2 - \bar{a}_1$. Show that $\bar{a}_1 \bar{a}_2 \geq a_1 a_2$

Use this process, repeated enough times, and induction to prove $G_n \leq A_n$ for all $n \in \mathbb{N}$.