Math 147 Assignment 5 - Not to be handed in

1. (a) Show that

$$\max(f(x), g(x)) = \frac{(f+g)(x) + |(f-g)(x)|}{2}.$$

- (b) Prove that if $f, g : \mathbb{R} \to \mathbb{R}$ are continuous functions, then the function $\max(f(x), g(x)) : \mathbb{R} \to \mathbb{R}$ is also continuous.
- 2. Suppose that

$$\sin(\pi x) \le f(x) \le \frac{1}{4x(1-x)}$$

for all $x \in (0,1)$. Determine f(1/2) and $\lim_{x\to 1/2} f(x)$. Is f continuous at x=1/2? (You can assume $\sin x$ is a continuous function.)

- 3. Show that the polynomial $p(x) = x^4 + 7x^3 9$ has at least two real roots.
- 4. Assume that f is continuous on [0,1] and that $0 \le f(x) \le 1$ for all $x \in [0,1]$. Prove there exists a $c \in [0,1]$ such that f(c) = c.
- 5. Suppose f and g are continuous on \mathbb{R} and let $S = \{x \in \mathbb{R} : f(x) = g(x)\}$. Suppose $x_n \in S$ for all $n \in \mathbb{N}$ and the sequence $(x_n)_{n=1}^{\infty}$ converges to x_0 . Show that $x_0 \in S$.
- 6. Let $h:[a,b]\to\mathbb{R}$ be a continuous function and assume that for every $x\in[a,b]$ there exists $y\in[a,b]$ such that $|h(y)|\leq\frac{1}{2}|h(x)|$. Prove there is some $c\in[a,b]$ with h(c)=0.