Math 147 Assignment 6 - Due Friday October 29, 2010

- 1. Suppose $f, g : \mathbb{R} \to \mathbb{R}$ are increasing functions. Is $f \cdot g$ increasing? What about $f \circ g$?
- 2. The function $f: \mathbb{R} \to \mathbb{R}$ is called *periodic* if there exists $d \in \mathbb{R}$ with f(x+d) = f(x) for all $x \in \mathbb{R}$. Suppose f is continuous and periodic. Prove that f attains maximum and minimum values.
- 3. Define f on $A = [0,1] \cup (2,3]$ by

$$f(x) = \begin{cases} x & \text{for } 0 \le x \le 1 \\ x - 1 & \text{for } 2 < x \le 3 \end{cases}.$$

- (a) Show that f is continuous, 1-1 and maps A onto [0,2].
- (b) Show that f^{-1} is not continuous. (This shows the necessity of the domain of f being an interval in our theorem about the continuity of the inverse of a continuous function.)
- 4. For a function $f:[0,\infty)\to\mathbb{R}$ we say that $\lim_{x\to\infty}f(x)=L$ if for every $\varepsilon>0$ there is some $N\in\mathbb{N}$ such that $|f(x)-L|<\varepsilon$ for all x>N.

Suppose that f is continuous and $\lim_{x\to\infty} f(x) = f(0)$. Prove that f attains maximum and minimum values.

- 5. A set $U \subseteq \mathbb{R}$ is said to be *open* if whenever $x \in U$ there exists $\varepsilon > 0$ such that $(x-\varepsilon, x+\varepsilon) \subseteq U$. A set F is said to be *closed* if its complement, $F^c = \{x \in \mathbb{R} : x \notin F\}$, is open.
 - (a) Show that every interval of the form (a, b) is open (as defined above).
 - (b) Show that if $\{U_{\alpha}\}_{{\alpha}\in I}$ is a collection of open sets, then

$$\bigcup_{\alpha \in I} U_{\alpha} = \{ x \in \mathbb{R} : x \in U_{\alpha} \text{ for some } \alpha \}$$

is also open.

- (c) Show that every interval of the form [a, b] is closed.
- (d) Prove that a set $F \subseteq \mathbb{R}$ is closed if and only if whenever (x_n) is a sequence in F that converges to some x_0 , then $x_0 \in F$.
- (e) A set $K \subseteq \mathbb{R}$ is called *compact* if every sequence (x_n) in K has a subsequence that converges to some $x_0 \in K$. Show that K is compact if and only if K is closed and bounded.