Math 147 Assignment 9 - Due Friday Nov. 19, 2010

- 1. Find the following limits:
 - (a) $\lim_{x\to 0} \frac{e^x 2^x}{\arctan x}$
 - (b) $\lim_{x\to\infty} xe^{1/x} x$
 - (c) $\lim_{x\to 0} \left(\frac{\sin x}{x}\right)^{1/x^2}$
- 2. Suppose $g(x) = e^x + 3x$.
 - (a) Show that g is invertible.
 - (b) Find the domain and range of g^{-1} . What is $g^{-1}(e+3)$?
 - (c) Find $(g^{-1})'$ (e+3)
- 3. Let a > 0. Show that the maximum value of

$$f(x) = \frac{1}{1+|x|} + \frac{1}{1+|x-a|}$$

is
$$(2+a)/(1+a)$$
.

- 4. Find the local and global extrema and inflection points of $h(x) = x(\log |x|)^2$. Graph h.
- 5. Suppose

$$f(x) = \begin{cases} x^4 \sin^2 1/x & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}.$$

- (a) Note that 0 is the global minimum value for f.
- (b) Show that f'(0) = f''(0) = 0.
- (c) Prove that there is no $\delta > 0$ such that f is increasing on $[0, \delta]$.
- 6. Suppose g(0) = 0 and g' is a strictly increasing function. Prove that f(x) = g(x)/x is strictly increasing on $(0, \infty)$. (Hint: Look at f' and apply MVT to g(x) g(0).)
- 7. Let

$$F(x) = \begin{cases} \exp(-1/x^2) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}.$$

- (a) Prove F'(0) = 0.
- (b) Bonus: Prove $F^{(n)}(0) = 0$ for all $n \in \mathbb{N}$.