MATH 148 Assignment 5 Due: Friday, March 4

1. This exercise is about arc-lengths. Please read the discussion below before
doing the problems.

Let f be a differentiable function defined on [a, b] and such that the deriva-
tive f’ is also continuous. These kinds of functions are usually called C-
functions. We are interested in a formula for the arc-length formed by the
graph of f. To that end partition the interval [a, b] in the usual style:

Pia=xg<x <ay<---<ux, =0>.

For each j = 1,...,n, the straight line segment running from the point
(xj_1, f(xj_1)) to the point (z;, f(z;)) has length that approximates the
arc-length of the graph of f over the interval [z;_q, z;].
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The length of this line segment is

f(zy) — flaj )

Tj—Tj1

2
\/(xj —xj1)? + (f(2)) — fla;1))? = \/1 + ( ) (zj—2j-1).
By the mean-value theorem applied to f over each interval [z,_;, |, this
last quantity becomes

\/1+ f'(t;)*(z; — xj_1) for some t; between x;_; and z;.

Hence we see that the Riemann sums R <\/1 + (f)%, P, 1, ... ,tn) ap-

proximate our desired arc-length. Note that /1 + (f’)? is continuous, since
we assumed that [’ is continuous. When all x; — xj—1 — 0, the resulting

integral
b
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will compute the desired arc-length. Often these integrals are brutal to cal-
culate using the Fundamental Theorem of Calculus Part I, but here come a
couple you can do.

(a) When a chain hangs loosely from two points of equal height, it forms
a curve called a catenary. For example, a loose necklace. The word
catenary is not surprising since it comes from the Latin “catena” mean-
ing chain, but I digress. The famous arch in St. Louis also has the
shape of a catenary. The shape of a catenary is modelled by the even
function

e’ +e”

2 )
also known as the hyperbolic cosine.

Sketch this catenary and then find its arc-length over the interval [—1, 1].

(b) Find the arc-length of y = e” over the interval [0, 1].

. Two circular tubes of radius 1 intersect each other at right angles, with their
central axes also crossing. In other words they meet in a fully symmetrical
way.

Find the volume of the resulting solid of intersection.
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Hint. The difficulty, if any, stems from a need for some 3-D imagination.
Here is a picture of the portion of the solid that lies in the first octant in R3.
I hope it helps.
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3. Here we exploit the monotonicity property of integrals to discover some
neat stuff. Since the principle applies to all integrals it applies to integral
functions. Namely:

Iffggon[a,b)wherea<b§oo,then/ fg/ g for all z in [a, b).

We shall refer the above principle as lifting the inequality f < g on the
interval [a, b)

(a) Lift the inequality e=* < 1 on [0, c0) a few times to show that
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for all x > 0.

(b) Use the information from part (a) to find a fraction that estimates

1
1

/ e~ dt with error at most —.
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. If a function f is uniformly continuous on a bounded, open interval (a, b),
show that f is bounded over (a, b). Does this hold if f is merely continuous

over (a,b)?
Hint. Take a 0 > 0 that works for ¢ = 1, and then pick a finite number of
points py, ..., p, in (a, b) such that every x in (a, b) is within ¢ of some p;.

. For any positive integers m and n, the functions (cos m!mz)?" are certainly
continuous. By way of contrast find the function you get when you calculate

lim lim (cosm!mz)®" for every x.
m—r00 N—r00

Hint. Handle the case where x is irrational separately from the rational case.
The purpose of this exercise was to alert you to the fact that limits of con-
tinuous functions need not be continuous functions.

. Suppose that z1,xs,...,%,,... 1s a decreasing sequence of non-negative
o

numbers, and that Z x, converges. Prove that nx,, — 0.
n=1

Hint. Convergent sequences are Cauchy sequences, and vice versa.

=1
. Find an n such that Z w <1075,
k=n+1

1
— klnk
but we want to get an idea of how s-1-o-w-1-y this series blows up.

. Show that Z diverges. That’s not hard to do with the integral test,
k=3

1
Ifs, = Z m > 10, prove that n > e
k=3

Hint. Compare the finite sum to an integral.

Do you think a computer can carry out the required number of additions to
have s,, exceed 10 within an hour? Just give a brief opinion.



9. The famous number e is defined to be the sum of the series > ,_, % We
may well know that e ~ 2.718281828. Here we ask ourselves how such
estimates for e can be obtained. Let s, =1+ 1+ % + % +oe 2

n!*

(a) Clearly

1 1 1
D mr2)! (n13)

e— 8, = '—l—...

_<1+ N ! +>
(n+1)! n+2 (n+2)(n+3)

< 1 1 1 1 1
=t ) ( +<n+1)+(n+1)2+(n+1)3+'“>

Use geometric series to complete the argument started above and show
thate — s, < -

nln

The above estimate for e using s,, is memorable stuff.

(b) Show that s1¢ estimates e with error at most—— .
36288000

(c) Use the result of part (a) to prove that e is irrational.

Hint. Suppose e is a rational number §. Then apply the inequality
of part (a) for a suitably large n to get a contradiction. This very
interesting item is just a bit harder.

BONUSES

You can hand these in these optional problems by the end of March.

6. On the interval [—1, 1] define a sequence of polynomials recursively by:

22— Az
fol#) =0, funla) = fu(o) + T2
(a) Find f,(z) for n = 1,2,3, and sketch these polynomials on graph
together with y = |z|. Using MAPLE would be nice.

(b) Show that for all n

2| = frra(z) = (|2| = fu(z)) (1 — M)
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(c) Prove that
0 < fu(z) < frori(z) < |x| forall n.

Hint. Assume all three inequalities for n — 1 and show all three for n.
Of course you have to check the startup case where n = 0.
(d) Show that
2]
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(e) Show that the polynomials f, converge uniformly on [—1, 1] to the
absolute value function.

To be able to tuck a polynomial uniformly close to a tight corner like this is
quite a decent trick.

You should note that these polynomials that tend uniformly to |z| on [—1, 1]
are not Taylor polynomials for y = |z|. After all the function y = |z| does
not even have a derivative at x = 0.

. If a > 0 and Zak diverges and s, is the n’th partial sum, show that

k=1
[e.@]
Qp . .
Z — still diverges.
n=1""



