
MATH 148 Assignment 5 Due: Friday, March 4

1. This exercise is about arc-lengths. Please read the discussion below before
doing the problems.

Let f be a differentiable function defined on [a, b] and such that the deriva-
tive f ′ is also continuous. These kinds of functions are usually called C1-
functions. We are interested in a formula for the arc-length formed by the
graph of f . To that end partition the interval [a, b] in the usual style:

P : a = x0 < x1 < x2 < · · · < xn = b.

For each j = 1, . . . , n, the straight line segment running from the point
(xj−1, f(xj−1)) to the point (xj, f(xj)) has length that approximates the
arc-length of the graph of f over the interval [xj−1, xj].
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The length of this line segment is

√
(xj − xj−1)2 + (f(xj)− f(xj−1))2 =

√
1 +

(
f(xj)− f(xj−1)

xj − xj−1

)2

(xj−xj−1).

By the mean-value theorem applied to f over each interval [xj−1, xj], this
last quantity becomes√

1 + f ′(tj)2(xj − xj−1) for some tj between xj−1 and xj.

Hence we see that the Riemann sums R
(√

1 + (f ′)2,P , t1, . . . , tn
)

ap-

proximate our desired arc-length. Note that
√

1 + (f ′)2 is continuous, since
we assumed that f ′ is continuous. When all xj − xj−1 → 0, the resulting
integral ∫ b

a

√
1 + (f ′)2

will compute the desired arc-length. Often these integrals are brutal to cal-
culate using the Fundamental Theorem of Calculus Part I, but here come a
couple you can do.

(a) When a chain hangs loosely from two points of equal height, it forms
a curve called a catenary. For example, a loose necklace. The word
catenary is not surprising since it comes from the Latin “catena” mean-
ing chain, but I digress. The famous arch in St. Louis also has the
shape of a catenary. The shape of a catenary is modelled by the even
function

y =
ex + e−x

2
,

also known as the hyperbolic cosine.
Sketch this catenary and then find its arc-length over the interval [−1, 1].

(b) Find the arc-length of y = ex over the interval [0, 1].

2. Two circular tubes of radius 1 intersect each other at right angles, with their
central axes also crossing. In other words they meet in a fully symmetrical
way.

Find the volume of the resulting solid of intersection.
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Hint. The difficulty, if any, stems from a need for some 3-D imagination.
Here is a picture of the portion of the solid that lies in the first octant in R3.
I hope it helps.

3. Here we exploit the monotonicity property of integrals to discover some
neat stuff. Since the principle applies to all integrals it applies to integral
functions. Namely:

If f ≤ g on [a, b) where a < b ≤ ∞, then
∫ x

a

f ≤
∫ x

a

g for all x in [a, b).

We shall refer the above principle as lifting the inequality f ≤ g on the
interval [a, b)

(a) Lift the inequality e−x ≤ 1 on [0,∞) a few times to show that

1− x+ x2

2
− x3

6
≤ e−x ≤ 1− x+ x2

2
− x3

6
+
x4

24
.
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for all x ≥ 0.

(b) Use the information from part (a) to find a fraction that estimates∫ 1

0

e−t
2

dt with error at most
1

216
.

4. If a function f is uniformly continuous on a bounded, open interval (a, b),
show that f is bounded over (a, b). Does this hold if f is merely continuous
over (a, b)?
Hint. Take a δ > 0 that works for ε = 1, and then pick a finite number of
points p1, . . . , pn in (a, b) such that every x in (a, b) is within δ of some pj .

5. For any positive integers m and n, the functions (cosm!πx)2n are certainly
continuous. By way of contrast find the function you get when you calculate

lim
m→∞

lim
n→∞

(cosm!πx)2n for every x.

Hint. Handle the case where x is irrational separately from the rational case.

The purpose of this exercise was to alert you to the fact that limits of con-
tinuous functions need not be continuous functions.

6. Suppose that x1, x2, . . . , xn, . . . is a decreasing sequence of non-negative

numbers, and that
∞∑
n=1

xn converges. Prove that nxn → 0.

Hint. Convergent sequences are Cauchy sequences, and vice versa.

7. Find an n such that
∞∑

k=n+1

1

k5
< 10−6.

8. Show that
∞∑
k=3

1

k ln k
diverges. That’s not hard to do with the integral test,

but we want to get an idea of how s-l-o-w-l-y this series blows up.

If sn =
n∑

k=3

1

k ln k
≥ 10, prove that n ≥ ee

9 .

Hint. Compare the finite sum to an integral.

Do you think a computer can carry out the required number of additions to
have sn exceed 10 within an hour? Just give a brief opinion.
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9. The famous number e is defined to be the sum of the series
∑∞

k=0
1
k!

. We
may well know that e ≈ 2.718281828. Here we ask ourselves how such
estimates for e can be obtained. Let sn = 1 + 1 + 1

2!
+ 1

3!
+ · · ·+ 1

n!
.

(a) Clearly

e− sn =
1

(n+ 1)!
+

1

(n+ 2)!
+

1

(n+ 3)!
+ . . .

=
1

(n+ 1)!

(
1 +

1

n+ 2
+

1

(n+ 2)(n+ 3)
+ . . .

)
≤ 1

(n+ 1)!

(
1 +

1

(n+ 1)
+

1

(n+ 1)2
+

1

(n+ 1)3
+ . . .

)
Use geometric series to complete the argument started above and show
that e− sn ≤ 1

n!n

The above estimate for e using sn is memorable stuff.

(b) Show that s10 estimates e with error at most
1

36288000
.

(c) Use the result of part (a) to prove that e is irrational.
Hint. Suppose e is a rational number p

q
. Then apply the inequality

of part (a) for a suitably large n to get a contradiction. This very
interesting item is just a bit harder.

BONUSES

You can hand these in these optional problems by the end of March.

6. On the interval [−1, 1] define a sequence of polynomials recursively by:

f0(x) = 0, fn+1(x) = fn(x) +
x2 − f 2

n(x)

2

(a) Find fn(x) for n = 1, 2, 3, and sketch these polynomials on graph
together with y = |x|. Using MAPLE would be nice.

(b) Show that for all n

|x| − fn+1(x) = (|x| − fn(x))
(
1− |x|+ fn(x)

2

)

5



(c) Prove that
0 ≤ fn(x) ≤ fn+1(x) ≤ |x| for all n.

Hint. Assume all three inequalities for n− 1 and show all three for n.
Of course you have to check the startup case where n = 0.

(d) Show that

|x| − fn(x) ≤ |x|
(
1− |x|

2

)n

<
2

n+ 1
for all n

(e) Show that the polynomials fn converge uniformly on [−1, 1] to the
absolute value function.

To be able to tuck a polynomial uniformly close to a tight corner like this is
quite a decent trick.

You should note that these polynomials that tend uniformly to |x| on [−1, 1]
are not Taylor polynomials for y = |x|. After all the function y = |x| does
not even have a derivative at x = 0.

7. If ak > 0 and
∞∑
k=1

ak diverges and sn is the n’th partial sum, show that

∞∑
n=1

an
sn

still diverges.
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