
MATH 148 Assignment 7 Due: Friday, March 18

Please get started on this assignment early. If you wait until the later next
week, then you might feel unpleasantly rushed.

1. For each series below find all x such that the series converges. In each case
the ratio test should help sort out all but a couple of x. Then work on those
couple of leftover cases.

(a)
∞∑
n=1

nxn (b)
∞∑
n=1

nnxn

(c)
∞∑
n=0

n

4n
(2x− 1)n (d)

∞∑
n=0

(n!)p

(pn)!
xn where p is a fixed positive integer

2. (a) Show that

−x2n ≤ 1

1 + x2
−
(
1− x2 + x4 − x6 + · · ·+ (−1)n−1(x2)n−1

)
≤ x2n

for each positive integer n.
Hint. Add up the geometric series in the brackets.

(b) Do an integration over [0, 1] of the above functions and compute the
sum of the series

1− 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+

1

13
− . . .

3. The integral test says that if f is ≥ 0 and decreasing on the interval [1,∞),
then the series

∑∞
n=1 f(n) converges if and only if the improper integral∫∞

1
f(t) dt converges.

Find a continuous, non-negative function f on [1,∞) such that the integral
converges but the series diverges, and find another f where the integral
diverges but the series converges. For this problem examples based on nice
pictures will make me happy enough, so there is no need for fancy formulas.
Obviously such functions had better not be decreasing.

4. If xn is a bounded sequence and c is a positive constant, show that

lim sup cxn = c lim supxn.

This is routine stuff once you understand lim sup.

Is it true that lim sup(xn + yn) = lim supxn + lim sup yn?
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5. Here’s a bit of review on integration theory.

A function f is integrable over some interval [a, b] when there is exactly
one number above all lower sums and below all upper sums for f . That one
number is called the integral of f over [a, b]. If a function f is continuous
over [a, b] we know many things about f . Such as for example, f is uni-
formly continuous over [a, b]. This allows us to show that a continuous f is
integrable over [a, b]. From this it follows that a continuous f is integrable
over any subinterval [a, x] of [a, b]. This allows us to define the integral
function g(x) =

∫ x

a
f for every x in [a, b]. Then the fundamental theorem

of calculus part 2 tells us that for f continuous we have g′(x) = f(x) for
every x in [a, b]. Thus we come to the conclusion that every continuous
function on an interval has an anti-derivative, and that its anti-derivative is
given by its integral function.

However, there are many integrable functions that are not continuous.

(a) Find an integrable function f on [−1, 1] whose integral function
g(x) =

∫ x

−1 f does not have a derivative at x = 0.

(b) Find an integrable function f on [−1, 1] whose integral function
g(x) =

∫ x

−1 f has a derivative at all x in [−1, 1] but g′(0) 6= f(0).

There is no need to get too fancy with the examples requested above.

6. Take the following sequence of functions:

fn(x) = xn for x in the interval [0, 1].

For each x in [0, 1] find lim
n→∞

fn(x). If f(x) is the limit you get for each x in

[0, 1], is the resulting function f continuous on [0, 1]. Explain briefly.

The rest of this assignment is about power series. There are some facts
discussed below you will need to know. These will be proven in class soon.
In the meantime it’s a good idea to start working with power series, before
we run out of time.

For each number x and fixed coefficients a0, a1, a2, . . . the series

a0 + a1x+ a2x
2 + · · ·+ anx

n + · · · =
∞∑
k=0

akx
k
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is called a power series in x. We are bound to seek those x for which such
a series converges. If a series converges for some x, we can let the sum
of the series be called f(x). Thus power series have the potential to make
functions. The first fundamental result to know (and which we will prove in
class) is that every power series MUST do one of three things:

• converge just for x = 0 (this is the useless case)

• converge absolutely for all x

• converge absolutely when |x| < some positive number R and diverge
when |x| > R.

In the last case, the positive number R is called the radius of convergence
of the power series. In the first case, we say that the radius is 0, and in the
second case, the radius is said to be∞.

For example, the ratio test applied to the series
∑∞

k=0 k!x
k shows that this

series converges just for x = 0, so the radius is 0. The series
∑∞

k=0
1
k!
xk

has radius∞ because we can use the ratio test to prove it converges for all
x. The function that this series converges to is usually called ex. As a third
example, we know that

∑∞
k=0 x

k converges if and only if |x| < 1. So for
this last geometric series the radius is 1. This geometric series converges to
the function 1

1−x .

A power series with a strictly positive radius R converges when |x| < R to
a value f(x). In this way power series are said to represent functions f(x)
on the interval (−R,R). This idea of a series representing a function on an
interval (−R,R) is very important.

You might also notice that question # 1 was also about power series.

7. Using the ratio or the root test find the radius of convergence of the follow-
ing series

(a)
∞∑
n=2

1

(lnn)2
xn (b)

∞∑
n=2

1

(lnn)n
xn (b)

∞∑
n=3

1

(lnn)lnn
xn
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8. Suppose
∞∑
n=0

anx
n has radius of convergence R where 0 < R <∞, and let k

be a fixed positive integer. What is the radius of convergence of
∞∑
n=0

anx
kn?

Note. In this power series, we take to be 0 the coefficients of those powers
of x that do not appear.

9. Using your knowledge of geometric series, and in part (c) partial fractions,
find power series to represent the following functions. In each case specify
the radius of convergence of your series.

(a)
1

2 + 5x
(b)

1

3x2 + 1
(c)

1

2x2 − 3x+ 1

Hint. One fact I always remember is that

1 + t+ t2 + · · ·+ tn + · · · = 1

1− t
when |t| < 1.

So try to get expressions that involve “ 1
1−t”and plug into the above fact.

Geometric series are truly important. They give us access to numerous other
power series.

BONUS

You can hand these in these optional problems by the end of March.

10. This question popped into my head when I was writing up question #5
above. At this moment I don’t know if it is easy, hard, known, or unknown.
I would guess it is rather hard but known.

Suppose F is a differentiable function on [0, 1] and that f(x) = F ′(x) for
all x in [0, 1] and that f is bounded on [0, 1]. Must f be integrable on [0, 1]?
When you look at the proof of FTC part 1, you will see that we assumed f
was integrable. Can this assumption be disposed of, or is there a bounded f
that is the derivative of some F and yet f is not integrable?

These kinds of questions involving the pathology of functions are of a kind
that you either love them a lot or really, really hate them.

4


