
MATH 148 Assignment 8 Due: Friday, March 25

This assignment is longer and more lively than normal. It touches on a lot of
core material. To avoid frustrations, please start working on it right away.

A couple of special results about power series are the integration and differen-
tiation theorems. Even though the proofs are not easy, the results are easy to state.
First digest what they say below.

Let

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n + . . . with radius R. (1)

The integrated series of f is defined to be:

a0x+
a1
2
x2 +

a2
3
x3 + · · ·+ an

n+ 1
xn+1 + . . . (2)

In other words just integrate each term in the expansion (1) of f . The integration
theorem for series says that the integrated series (2) has the same radius R as the
original series in (1), and that the integrated series in (2) converges to the integral
function

∫ x

0
f(t) dt. In other words, the integrated series represents the integral

function and the radius of convergence does not change.

The derived series of f is defined to be:

a1 + 2a2x+ 3a3x
2 + 4a4x

4 + · · ·+ nanx
n−1 + . . . (3)

In other words, just differentiate each term in the expansion (1) of f . The differ-
entiation theorem says that the derived series given in (3) has the same radius R
as the original series (1) for f , and converges to the derivative f ′(x).

Feel free to use these theorems as needed in the exercises that follow.

1. Use the root test to find the radius of the series

1 + x+ 2x2 +
1

3
x3 + 4x4 +

1

5
x5 + 6x6 +

1

7
x7 + . . .

Find an explicit formula for the function represented by this series.

Hint. Find the sums of the series involving even and odd powers of x sep-
arately. To do that take the known expansion for the geometric series, and
then use the differentiation and integration theorems for series, along with
a bit of algebraic trickery.

1



2. Let us recall the binomial theorem. It said that if n = 0, 1, 2, 3, . . . , then

(1 + x)n = 1 + nx+

(
n
2

)
x2 + · · ·+

(
n
r

)
xr + · · ·+ xn,

where(
n
r

)
=

n(n− 1)(n− 2) · · · (n− r + 1)

r!
for r = 0, 1, 2, . . . , n.

Here we explore what the binomial theorem says when n 6= 0, 1, 2, 3, . . . .

We take any fixed real number t ∈ R but t 6= 0, 1, 2, 3, . . . .

If r = 1, 2, 3, . . . the binomial coefficient
(
t
r

)
is defined to be the number(

t
r

)
=

t(t− 1)(t− 2) · · · (t− r + 1)

r!
. We also put

(
t
0

)
= 1.

Notice now that the numerators need not be integers, and that there is no
bound on big the integer r can be.

(a) Just to warm up, calculate and simplify
(
−2
6

)
,

(
1/2
5

)
and

(
−1/3
4

)
.

(b) Verify by grinding out the definition of binomial coefficients that

(r + 1)

(
t

r + 1

)
+ r

(
t
r

)
= t

(
t
r

)
for all r = 0, 1, 2, . . . .

(c) For each t use the ratio test to show that the radius of convergence of
the series

1 + tx+

(
t
2

)
x2 +

(
t
3

)
x3 + · · ·+

(
t
r

)
xr + . . .

is 1. Where did you need the fact t 6= 0, 1, 2, . . . ?

(d) If f(x) =
∞∑
n=0

(
t
r

)
xr where x ∈ (−1, 1), we are interested in figuring

out the function f in more familiar terms.
Use the differentiation theorem along with part (b) up above to show
that

(1 + x)f ′(x) = tf(x) for all x in (−1, 1)
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(e) Prove that
(

f(x)

(1 + x)t

)′
= 0, and use this information to deduce that

f(x) = (1 + x)t for −1 < x < 1.

Thus you have derived and verified what is known as Newton’s bino-
mial expansion for exponents t that are not 0, 1, 2, . . . .
This is a really neat result!

3. If the radius of the power series
∞∑
n=0

anx
n is R and 0 < R <∞, what is the

radius of
∞∑
n=0

anx
n2

= a0 + a1x
1 + a2x

4 + a3x
9 + a4x

16 + . . . ?

4. Suppose

f(x) = a0 + a1x+ a2x
2 + a3x

3 + · · ·+ anx
n + . . . with radius R.

The differentiation theorem as discussed above for a function f can be reap-
plied to f ′ to get a formula for f ′′ and then for f ′′′ and so on.

(a) Use this to prove that

a0 = f(0), a1 = f ′(0), a2 =
f ′′(0)

2
, a3 =

f ′′′(0)

6
, . . . , an =

f (n)(0)

n!
, . . .

Of course you now seee that the coefficients of a power series that
represents a function must be the Taylor coefficients of the function.

(b) Explain why two different power series cannot represent the same
function on an interval (−R,R).

5. We just saw above that if f is a function given by a power series f(x) =
∞∑
n=0

anx
n on some interval (−R,R) where 0 < R ≤ ∞, then f has deriva-

tives of all orders for all x in (−R,R), and that the coefficients of the series
representing f have to be the Taylor coefficients of f .

A decent question concerns the converse of this. Suppose f has derivatives
of all orders on some interval (−R,R), is there a power series representation
of f on (−R,R)? Regrettably NOT. For instance take the function f(x) =
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1

1 + x2
on (−∞,∞), which has derivatives of all orders on (−∞,∞). It

has the power series representation

1

1 + x2
= 1− x2 + x4 − x6 + · · ·+ (−1)nx2n + . . . ,

but this only holds for x in (−1, 1) instead of (−∞,∞).
The next example will show you that things can get much worse than this.

Let f(x) =

{
e−1/x

2 when x 6= 0

0 when x = 0
.

It is easy to see that f is continuous at 0. A look at the graph of f using
MAPLE can be quite informative and is strongly recommended. Answer
the following questions regarding this f .

(a) First show by induction on n = 0, 1, 2, . . . that if x 6= 0, then f (n)(x) =
p
(
1
x

)
e−1/x

2 where p
(
1
x

)
is a polynomial in 1

x
.

(b) Show that f has derivatives of all orders at 0 and that f (n)(0) = 0 for
all n = 0, 1, 2, . . . .
Hint. Use induction on n along with the facts e−x/xk → 0 as x→∞
(regardless of k), and thus 1

xk e
−1/x2 → 0 as x → 0, and thus, for any

polynomial in 1
x
, p
(
1
x

)
e−1/x

2 → 0 as x→ 0.

(c) Suppose that f(x) =
∞∑
n=0

anx
n for x in some open interval (−R,R).

Obtain a contradiction by showing all an = 0.
Hint. Use problem 4.

6. You may have wondered why odd functions are called “odd” and even func-
tions are called “even”. Here is a possible explanation.

Suppose f(x) = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + . . . for x in an interval

(−R,R), and that f is an even function on the interval (−R,R).

Prove that a1 = a3 = a5 = a7 = · · · = 0.

Thus only the even coefficients appear in the power series expansion of f .

Likewise prove that if f is odd, then a0 = a2 = a4 = a6 = · · · = 0.

Hint. Not so hard using problem 4 above.
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7. Knowing the standard geometric power series representation for
1

1− x
on

(−1, 1), you certainly can come up with power series representations for
1

1 + x
,

1

1 + x2
and stuff like that.

(a) Use the integration theorem discussed in the previous assignment to
find a power series representation for f(x) = ln(1 + x) on (−1, 1).

(b) Use part (a) above, but not a calculator, to find a fraction that estimates
ln(3/2) with error at most 1/64.

(c) Find a power series representation of g(x) = arctan

(
x2

2

)
, and give

its radius of convergence.

8. Start with the usual formula for the sum of a geometric series. Apply the
differentiation theorem to it two times. You now have a series that converges
to a known analytic function on (−1, 1). Multiply this series by x2, and
thereby represent another analytic function on (−1, 1). Use this information

to find the value of
∞∑
n=0

n2

3n
.

9. Use the power series representation of ex, in conjunction with the error

estimate in the alternating series test, to estimate
∫ 1/2

0

e−x
3

dx with error

at most 1/109.

10. By the binomial expansion of the previous assignment you know there are
coefficients an such that

1√
1 + x

= (1 + x)−1/2 = a0 + a1x+ a2x
2 + . . . for x ∈ (−1, 1).

(a) Find a0, a1 and a2.

(b) By a simple substitution show that
1√

1− x2
is analytic on (−1, 1) and

find its power series expansion as far the x4 term.

(c) Show that arcsin(x) is analytic on (−1, 1) and find its power series
expansion up to the x5 term. Then write the power series expansion of
arcsin(x2) as far as the x10 term.
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(d) It is well known that sin(x) for every x in R:

sin(x) = x− 1

3!
x3 +

1

5!
x5 − 1

7!
x7 + . . . .

Maybe you did this in MATH 147.
Use this information along with the parts done before to find

lim
x→0

arcsin(x2)− sin(x2)

x6
.

11. For each sequence of functions below on the interval specified decide if
the sequence converges point-wise, determine the limit function, and then
decide if the convergence is uniform.

(a) fn(x) = nxn(1− x) on [0, 1]

(b) fn(x) =
nx

1 + n+ x
on [0,∞)

(c) fn(x) =

√
x2 +

1

n2
on R

BONUS

You can hand in this optional problem by April 1.

11. Suppose that on the closed interval [0, 1] you have a sequence of non-
negative, continuous functions fn and that for every x in [0, 1] the sequence
fn(x) decreases and converges to 0. Show that fn → 0 uniformly on [0, 1].

Suggestions. Explain why ‖f1‖ ≥ ‖f2‖ ≥ · · · ≥ ‖fn‖ ≥ . . . . If ‖fn‖ 6→ 0,
show there is a sequence xn in [0, 1] such that fn(xn) is bounded away from
0. Apply Bolzano-Weierstrass.
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