1: (a) Let A be a set. For each $\alpha \in A$, let $p_{\alpha} \in \mathbf{R}^{n}$, let U_{α} be a vector space in \mathbf{R}^{n} , and let $P = \bigcap_{\alpha \in A} (p_{\alpha} + U_{\alpha})$. Show that if P is not empty then it is an affine space in \mathbf{R}^{n} .

(b) Let
$$p = \begin{pmatrix} 1\\3\\1\\2\\2 \end{pmatrix}$$
, $A = \begin{pmatrix} 2 & 3 & 1\\1 & 2 & 0\\2 & 4 & 1\\3 & 5 & 2\\1 & 2 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 2 & 1 & -1 & -2\\1 & -3 & 0 & -1 & 3 \end{pmatrix}$ and $q = \begin{pmatrix} 1\\-3 \end{pmatrix}$, and let $P = p + \text{Col}A$ and $Q = \begin{pmatrix} 1\\-3 \end{pmatrix}$.

 $Q = \{x \in \mathbf{R}^5 | Bx = q\}$. Show that $P \cap Q$ is not empty and find its dimension.

2: For two affine spaces P and Q in \mathbb{R}^n , the **distance** between P and Q is defined to be

$$\operatorname{dist}(P,Q) = \min\left\{\operatorname{dist}(x,y) \middle| x \in P, y \in Q\right\}$$

(a) Let p and q be points in \mathbb{R}^n , let U and V be subspaces of \mathbb{R}^n , and let P = p + U and Q = q + V. Show that

$$\operatorname{dist}(P,Q) = \left|\operatorname{Proj}_{(U+V)^{\perp}}(p-q)\right|$$

(b) Let $p = (1, 2, 4, 3)^t$, $u_1 = (1, 2, 0, 1)^t$, $u_2 = (3, 5, 1, 2)^t$, $q = (4, 3, 1, 2)^t$, $v_1 = (2, 3, 2, -1)^t$, $v_2 = (1, 3, 1, -2)^t$. Find the distance between the plane $x = p + t_1u_1 + t_2u_2$ and the plane $x = q + s_1v_1 + s_2v_2$.

3: For two non-trivial vector spaces U and V in \mathbb{R}^n , we define the **angle** between U and V, which we write as angle(U, V), as follows. If $U \subset V$ or $V \subset U$ then angle(U, V) = 0, otherwise if $U \cap V = \{0\}$ then

angle
$$(U, V) = \min \left\{ \theta(u, v) \middle| 0 \neq u \in U, 0 \neq v \in V \right\},$$

and if $U \cap V = W \neq \{0\}$ then $angle(U, V) = angle(U \cap W^{\perp}, V \cap W^{\perp})$. We define the angle between two affine spaces in \mathbb{R}^n to be the angle between their associated vector spaces.

(a) Let $0 \neq u \in \mathbf{R}^n$, let $U = \text{Span}\{u\}$, and let V be a non-trivial vector space in \mathbf{R}^n . Show that

$$\operatorname{angle}(U, V) = \cos^{-1} \left| \operatorname{Proj}_V \left(\frac{u}{|u|} \right) \right|$$

(b) Let $u_1 = (1, -2, 1, -3)^t$, $u_2 = (3, 2, 1, -1)^t$, $v_1 = (1, -1, 0, 1)^t$, $v_2 = (1, -3, 2, -1)^t$ and $v_3 = (2, -1, 1, -1)^t$. Find the angle between $U = \text{Span}\{u_1, u_2\}$ and $V = \text{Span}\{v_1, v_2, v_3\}$.

4: Let
$$a_0, a_1, \dots, a_l$$
 be points in \mathbf{R}^n . Show that $[a_0, a_1, \dots, a_l] = \left\{ \sum_{i=0}^l s_i a_i \middle| 0 \le s_i \in \mathbf{R}, \sum_{i=0}^l s_i = 1 \right\}$.

5: Let S = [a₀, a₁, ..., a_l] be an *l*-simplex in Rⁿ. for each 0 ≤ j < k ≤ n, the altitudinal hyperplane B_{j,k} is the (l − 1)-dimensional affine space in ⟨a₀, a₁, ..., a_l⟩ which is perpendicular to the edge [a_j, a_k] and which passes through the centroid of the (l − 2)-simplex [a₀, a₁, ..., ă_j, ..., ă_k, ..., a_l], (where the check mark above the points a_j and a_k indicates that these points are excluded). Show that the altitudinal hyperplanes have a unique point of intersection. This point is denoted by h and is called the orthocenter of the *l*-simplex S. (b) Let S = [a₀, a₁, ..., a_l] be an *l*-simplex in Rⁿ. Let o, g and h be the circumcenter, the centroid, and the orthocenter of S. Show that g lies ^{l−1}/_{l+1} of the way along the line segment from o to h.