1: Let $p_1(x) = x - 1$, $p_2(x) = \frac{1}{2}(x^2 - 3x)$ and $p_3(x) = \frac{1}{2}(x^3 - 3x^2 + 2)$. Find the polynomial $f \in \text{Span}\{p_1, p_2, p_3\}$ which minimizes the sum $\sum_{i=1}^{5} (f(a_i) - b_i)^2$ for the 5 points (a_i, b_i) given below

- **2:** (a) Find the perimeter of the regular hexagon on \mathbf{S}^2 with interior angles equal to $\frac{5\pi}{6}$.
 - (b) Find the area of the regular hexagon on \mathbf{S}^2 with sides of length $\frac{\pi}{6}$.

3: (a) Let
$$u = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$
, $v = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ and $w = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$. Find the area of the triangle T on \mathbf{S}^2 given by
 $T = \left\{ x \in \mathbf{S}^2 \mid \operatorname{dist}(x, u) \le \frac{\pi}{2}, \operatorname{dist}(x, v) \le \frac{\pi}{2} \text{ and } \operatorname{dist}(x, w) \le \frac{\pi}{2} \right\}.$
(b) Let $u = \frac{1}{\sqrt{6}} \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$, $v = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ and $w = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$. Find the circumcenter of triangle $[u, v, w]$ on \mathbf{S}^2 .

4: (a) Let R be the radius of the Earth, in meters $(R \cong 6, 370, 000)$. We describe the position of a point on the Earth in terms of its longitude θ (with $\theta = 0$ at Greenwitch, England and $\theta = \frac{\pi}{2}$ somewhere in Bangladesh) and its latitude ϕ (with $\phi = 0$ at the equator and $\phi = \frac{\pi}{2}$ at the north pole). Find the distance (expressed as a multiple of R) and the bearing (expressed as an angle north of east) from the point at $(\theta, \phi) = (\frac{\pi}{3}, \frac{\pi}{6})$ to the point at $(\theta, \phi) = (\frac{\pi}{2}, \frac{\pi}{4})$.

(b) Find the radius R of a sphere on which there is a regular (equilateral) triangle with sides of length 1 and angles equal to $\frac{2\pi}{5}$.

5: Let $u_1, u_2, \dots, u_{n-2} \in \mathbf{R}^n$ and let $A = (u_1, u_2, \dots, u_{n-2}) \in M_{n \times (n-2)}(\mathbf{R})$. For i < j, let $A^{i,j}$ denote the $(n-2) \times (n-2)$ matrix obtained from A by removing the i^{th} and j^{th} rows. Note that $\{u_1, \dots, u_{n-2}\}$ is linearly independent if and only if $A^{i,j}$ is invertible for some i < j. Find a formula for an $n \times n$ matrix B with the property that if $\{u_1, \dots, u_{n-2}\}$ is linearly dependent then B = 0 and if $\{u_1, \dots, u_{n-2}\}$ is linearly independent then for all i < j, if $A^{i,j}$ is invertible the the i^{th} and j^{th} columns of B form a basis for $(\text{Col}A)^{\perp}$.