Due Mon July 4

1: Let
$$u_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ -1 \end{pmatrix}$$
, $u_2 = \begin{pmatrix} 2 \\ 1 \\ 1 \\ 0 \end{pmatrix}$, $u_3 = \begin{pmatrix} 1 \\ -3 \\ 2 \\ 1 \end{pmatrix}$ and $x = \begin{pmatrix} 1 \\ 1 \\ 7 \\ 3 \end{pmatrix}$. Let $\mathcal{U} = \{u_1, u_2, u_3\}$ and let $U = \text{Span } \mathcal{U}$. Find $\text{Proj}_U(x)$ in the following three ways.

(a) Let $A = (u_1, u_2, u_3) \in M_{4\times 3}$ then use the formula $\operatorname{Proj}_U(x) = Ay$ where y is the solution to $A^t A y = A^t x$. (b) Apply the Gram-Schmidt Procedure to the basis \mathcal{U} to obtain an orthogonal basis $\mathcal{V} = \{v_1, v_2, v_3\}$ for U, then use the formula $\operatorname{Proj}_U(x) = \sum_{i=1}^3 \frac{x \cdot v_i}{|v_i|^2} v_i$.

(c) Find $w = X(u_1, u_2, u_3)$ so that $\{w\}$ is a basis for U^{\perp} , then calculate $\operatorname{Proj}_U(x) = x - \operatorname{Proj}_w(x)$.

2: Consider the vector space $P_2 = P_2(\mathbf{R})$ as a subspace of the vector space

$$\mathcal{C}((0,1)) = \mathcal{C}((0,1), \mathbf{R}) = \left\{ f: (0,1) \to \mathbf{R} \middle| f \text{ is continuous, and } \int_0^1 f(x) \, dx \text{ converges.} \right\}$$

with the inner product given by $\langle f,g\rangle = \int_0^1 fg.$

(a) Let $p_0 = 1$, $p_1 = x$ and $p_2 = x^2$. Apply the Gram-Schmidt Procedure to the basis $\{p_0, p_1, p_2\}$ to obtain an orthogonal basis $\{q_0, q_1, q_2\}$ for P_2 .

- (b) Find the quadratic $f \in P_2$ which minimizes $\int_0^1 (f(x) x^{-1/2})^2 dx$.
- (c) Given that $f \in \mathcal{C}((0,1))$ with $\int_0^1 f(x) dx = 3$, $\int_0^1 x f(x) dx = 2$ and $\int_0^1 x^2 f(x) dx = 1$, find the minimum possible value for $\int_0^1 f(x)^2 dx$.
- **3:** Let U and V be inner product spaces over **R**. An **isometry** from U to V is a surjective map $F: U \to V$ which preserves distance, so that for all $x, y \in U$ we have |F(x) F(y)| = |x y|. An inner product space **isomorphism** from U to V is a bijective linear map $G: U \to V$ which preserves inner product, so that for all $x, y \in U$ we have $\langle G(x), G(y) \rangle = \langle x, y \rangle$. Show that, in the case that U and V are finite dimensional, every isometry $F: U \to V$ is of the form F(x) = G(x) + b for some inner product space isomorphism G and some $b \in V$.
- 4: Identify \mathbf{C}^n with \mathbf{R}^{2n} using the bijection $\phi: \mathbf{C}^n \to \mathbf{R}^{2n}$ given by

$$\phi(x_1 + i y_1, \cdots, x_n + i y_n)^t = (x_1, y_1, \cdots, x_n, y_n)^t.$$

(a) Determine whether, for all vectors $u, v \in \mathbb{C}^n$, u is orthogonal to v in \mathbb{C}^n if and only if $\phi(u)$ is orthogonal to $\phi(v)$ in \mathbb{R}^{2n} .

(b) Determine whether, for all complex subspaces $U, V \subset \mathbb{C}^n$, U is orthogonal to V in \mathbb{C}^n if and only if $\phi(U)$ is orthogonal to $\phi(V)$ in \mathbb{R}^{2n} .

5: Identify \mathbf{C}^n with \mathbf{R}^{2n} using the map ϕ from question 4. Given two 1-dimensional complex subspaces $U, V \subset \mathbf{C}^n$, we define the **angle** between U and V to be

angle
$$(U, V) = \cos^{-1} \frac{|\langle u, v \rangle|}{|u||v|}$$
, where $0 \neq u \in U$, $0 \neq v \in V$.

- (a) Explain why this definition is well-defined.
- (b) Determine whether, for all 1-dimensional complex subspaces $U, V \subset \mathbb{C}^n$, the angle between U and V in \mathbb{C}^n is equal to the angle between $\phi(U)$ and $\phi(V)$ in \mathbb{R}^{2n} .