1: For $0 \neq u \in \mathbb{R}^3$ and $\theta \in \mathbb{R}$, let $R_{u,\theta} : \mathbb{R}^3 \to \mathbb{R}^3$ denote the rotation about the vector u by the angle θ (where the direction of rotation is determined by the right-hand rule: the right thumb points in the direction of u and the fingers curl in the direction of rotation).

(a) Let
$$
u = (1, 1, -1)^t
$$
 and let $\theta = \frac{\pi}{3}$. Find $A = [R_{u,\theta}]$.
\n(b) Let $B = \begin{pmatrix} 2 & 3 & -6 \\ -3 & 6 & 2 \\ 6 & 2 & 3 \end{pmatrix}$. Find $c > 0$, $0 \neq u \in \mathbb{R}^3$ and $0 \leq \theta \leq \pi$ such that $B = [c R_{u,\theta}]$.

2: (a) Let
$$
A = \begin{pmatrix} 0 & & & \\ \vdots & & I & \\ 0 & & & \\ a_0 & a_1 & \cdots & a_{n-1} \end{pmatrix} \in M_{n \times n}(\mathbf{C})
$$
. Find $f_A(t)$ and find a basis for each eigenspace E_{λ} .
\n(b) Let $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & 5 & -2 \end{pmatrix}$. Find a diagonal matrix D and an invertible matrix P such that $P^{-1}AP = D$.
\n(c) Let $x_0 = 2$, $x_1 = 2$ and $x_2 = 1$, and for $n \ge 0$ let $x_{n+3} = 6x_n + 5x_{n+1} - 2x_{n+2}$. Use part (b) to find x_n .

- 3: Let $A \in M_{n \times n}(\mathbf{R})$. Suppose that A is diagonalizable over C, so there exists a diagonal matrix $D \in M_{n \times n}(\mathbf{C})$
- and an invertible matrix $Q \in M_{n \times n}(\mathbf{C})$ such that $Q^{-1}AQ = D$. Show that there exists an invertible matrix $P \in M_{n \times n}(\mathbf{R})$ such that $P^{-1}AP$ is in the block-diagonal form

$$
P^{-1}AP = \begin{pmatrix} \lambda_1 & & & & & & \\ & \ddots & & & & & \\ & & \lambda_k & & & & \\ & & & a_1 & b_1 & & \\ & & & -b_1 & a_1 & & \\ & & & & & \ddots & \\ & & & & & & a_l & b_l \\ & & & & & & -b_l & a_l \end{pmatrix}
$$

where each 1×1 block corresponds to a real eigenvalue λ_j of A, and each 2×2 block corresponds to a pair of conjugate complex eigenvalues $a_j \pm i b_j$.

- 4: (a) Let U and V be inner product spaces over C. Let $L: U \to V$ be a linear map, and suppose that the adjoint $L^*: V \to U$ exists. Show that $Null(L^*L) = Null(L) = Range(L^*)^{\perp}$. (b) Let U be an inner product space over C. Let $L: U \to U$ be linear and suppose that L^* exists. Show
	- that $L = L^* \iff \langle L(x), x \rangle \in \mathbf{R}$ for all $x \in U$.
- 5: Let $\mathbf{F} = \mathbf{R}$ or C. Let V be the inner product space over \mathbf{F} consisting of all sequences $a = (a_1, a_2, a_3, \cdots)$ with each $a_k \in \mathbf{F}$ such that only finitely many of the terms a_k are non-zero, with the inner product given by $\langle a, b \rangle = \sum_{n=1}^{\infty}$ $\sum_{k=1}^{\infty} a_k \overline{b_k}$. Let $U = \left\{ a = (a_1, a_2, \dots) \in V \Big| \sum_{k=1}^{\infty} \right\}$ $\sum_{k=1}^{\infty} a_k = 0$. The standard basis for V is the basis $S = \{e_1, e_2, e_3, \dots\}$ where $e_n = (e_{n,1}, e_{n,2}, e_{n,3}, \dots)$ with $e_{n,k} = \delta_{n,k}$. (a) Show that $U^{\perp} = \{0\}.$
	- (b) Show that $\dim(U^0) = 1$.
	- (c) Let $\mathcal{F} = \{f_1, f_2, f_3, \dots\}$ where $f_n \in V^*$ is determined by $f_n(e_k) = \delta_{n,k}$. Show that \mathcal{F} is linearly independent but does not span V^* .
	- (d) Define $E: V \to V^{**}$ by $E(a)(f) = f(a)$, where $a \in V$ and $f \in V^*$. Show that E is 1:1 but not onto.
	- (e) Define $L: V \to V$ by $L(a)_k = \sum_{k=1}^{\infty}$ $\sum_{i=k} a_i$, where $a \in V$. Show that L has no adjoint.

 D .