1: For $0 \neq u \in \mathbf{R}^3$ and $\theta \in \mathbf{R}$, let $R_{u,\theta} : \mathbf{R}^3 \to \mathbf{R}^3$ denote the rotation about the vector u by the angle θ (where the direction of rotation is determined by the right-hand rule: the right thumb points in the direction of u and the fingers curl in the direction of rotation).

(a) Let
$$u = (1, 1, -1)^t$$
 and let $\theta = \frac{\pi}{3}$. Find $A = [R_{u,\theta}]$.
(b) Let $B = \begin{pmatrix} 2 & 3 & -6 \\ -3 & 6 & 2 \\ 6 & 2 & 3 \end{pmatrix}$. Find $c > 0, 0 \neq u \in \mathbf{R}^3$ and $0 \le \theta \le \pi$ such that $B = [c R_{u,\theta}]$.

2: (a) Let
$$A = \begin{pmatrix} 0 & & \\ \vdots & I & \\ 0 & & \\ a_0 & a_1 & \cdots & a_{n-1} \end{pmatrix} \in M_{n \times n}(\mathbf{C})$$
. Find $f_A(t)$ and find a basis for each eigenspace E_{λ} .
(b) Let $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & 5 & -2 \end{pmatrix}$. Find a diagonal matrix D and an invertible matrix P such that $P^{-1}AP = D$.
(c) Let $x_0 = 2, x_1 = 2$ and $x_2 = 1$, and for $n \ge 0$ let $x_{n+3} = 6x_n + 5x_{n+1} - 2x_{n+2}$. Use part (b) to find x_n .

3: Let $A \in M_{n \times n}(\mathbf{R})$. Suppose that A is diagonalizable over \mathbf{C} , so there exists a diagonal matrix $D \in M_{n \times n}(\mathbf{C})$ and an invertible matrix $Q \in M_{n \times n}(\mathbf{C})$ such that $Q^{-1}AQ = D$. Show that there exists an invertible matrix $P \in M_{n \times n}(\mathbf{R})$ such that $P^{-1}AP$ is in the block-diagonal form

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & & & & \\ & \ddots & & & & \\ & & \lambda_k & & & \\ & & a_1 & b_1 & & \\ & & -b_1 & a_1 & & \\ & & & & \ddots & \\ & & & & a_l & b_l \\ & & & & -b_l & a_l \end{pmatrix}$$

where each 1×1 block corresponds to a real eigenvalue λ_j of A, and each 2×2 block corresponds to a pair of conjugate complex eigenvalues $a_j \pm i b_j$.

- 4: (a) Let U and V be inner product spaces over C. Let L : U → V be a linear map, and suppose that the adjoint L* : V → U exists. Show that Null(L*L) = Null(L) = Range(L*)[⊥].
 (b) Let U be an inner product space over C. Let L : U → U be linear and suppose that L* exists. Show that L = L* ⇔ ⟨L(x), x⟩ ∈ R for all x ∈ U.
- 5: Let F = R or C. Let V be the inner product space over F consisting of all sequences a = (a₁, a₂, a₃, ···) with each a_k ∈ F such that only finitely many of the terms a_k are non-zero, with the inner product given by ⟨a, b⟩ = ∑_{k=1}[∞] a_k b_k. Let U = {a = (a₁, a₂, ···) ∈ V | ∑_{k=1}[∞] a_k = 0}. The standard basis for V is the basis S = {e₁, e₂, e₃, ···} where e_n = (e_{n,1}, e_{n,2}, e_{n,3}, ···) with e_{n,k} = δ_{n,k}.
 (a) Show that U[⊥] = {0}.
 - (b) Show that $\dim(U^0) = 1$.
 - (c) Let $\mathcal{F} = \{f_1, f_2, f_3, \dots\}$ where $f_n \in V^*$ is determined by $f_n(e_k) = \delta_{n,k}$. Show that \mathcal{F} is linearly independent but does not span V^* .
 - (d) Define $E: V \to V^{**}$ by E(a)(f) = f(a), where $a \in V$ and $f \in V^*$. Show that E is 1:1 but not onto.
 - (e) Define $L: V \to V$ by $L(a)_k = \sum_{i=k}^{\infty} a_i$, where $a \in V$. Show that L has no adjoint.