1: (a) For the quadratic curve $7x^2 + 8xy + y^2 + 5 = 0$, find the coordinates of each vertex, find the equation of each asymptote, and sketch the curve.

(b) For the real quadratic form $K(x, y, z) = 3x^2 + ay^2 + bz^2 - 6xy + 2xz - 4yz$, sketch the set of points (a, b)for which K is positive-definite.

2: Let U and V be non-trivial subspaces of \mathbf{R}^n with $U \cap V = \{0\}$. Recall that

 $\operatorname{angle}(U, V) = \min \left\{ \operatorname{angle}(u, v) \middle| 0 \neq u \in U, 0 \neq v \in V \right\}.$

(a) Show that $\operatorname{angle}(U, V) = \cos^{-1}(\sigma)$ where σ is the largest singular value of the linear map $P: U \to V$ given by $P(x) = \operatorname{Proj}_{V}(x)$.

(b) Let
$$u_1 = \begin{pmatrix} 1\\ 1\\ -1\\ 1 \end{pmatrix}$$
, $u_2 = \begin{pmatrix} 2\\ 1\\ -1\\ 2 \end{pmatrix}$, $v_1 = \begin{pmatrix} 1\\ 1\\ 0\\ -1 \end{pmatrix}$ and $v_2 = \begin{pmatrix} 2\\ 1\\ 1\\ 0 \end{pmatrix}$. Let $U = \text{Span}\{u_1, u_2\}$ and $V = \text{Span}\{v_1, v_2\}$.
Find $\text{angle}(U, V)$.

- **3:** Let $\mathbf{F} = \mathbf{Z}_7$, the field of integers modulo 7.
 - (a) Let $A = \begin{pmatrix} 2 & 1 & 5 \\ 1 & 4 & 3 \\ 5 & 3 & 0 \end{pmatrix} \in M_{3 \times 3}(\mathbf{F})$. Find $Q \in GL(3, \mathbf{F})$ such that $Q^t A Q$ is diagonal.
 - (b) Find the number of distinct congruence classes of 3×3 symmetric matrices over **F**.

4: (a) Let $A = \begin{pmatrix} 1-i & i \\ 2i & -1+i \end{pmatrix} \in M_{2 \times 2}(\mathbf{C})$. Find $\max_{|x|=1} |Ax|$ and $\min_{|y|=1} |Ay|$, and find unit vectors x and y for which these maximum and minimum values are attained.

(b) Let $\mathbf{F} = \mathbf{R}$ or \mathbf{C} . Let $A \in M_{n \times n}(\mathbf{F})$ with $A^* = A$. Let $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ be the eigenvalues of A, listed in increasing order, with repetition according to multiplicity. Show that for each $k = 1, 2, \dots, n$ we have

$$\lambda_k = \min_{U \subset \mathbf{F}^n, \dim U = k} \left(\max_{x \in U, |x| = 1} x^* A x \right)$$

5: Let U and V be vector spaces over a field **F** with char(**F**) $\neq 2$. For $u \in U$ and $v \in V$, let $u \otimes v$ denote the bilinear map from $U^* \times V^*$ to **F** given by

$$(u \otimes v)(f,g) = f(u)g(v)$$

for $f \in U^*$ and $g \in V^*$. For $u, v \in U$ let $u \odot v$ and $u \land v$ be the bilinear maps from $U^* \times U^* \to \mathbf{F}$ given by

$$u \odot v = \frac{1}{2} ((u \otimes v) + (v \otimes u)), \quad u \wedge v = \frac{1}{2} ((u \otimes v) - (v \otimes u))$$

Note that $u \odot v$ is symmetric and $u \land v$ is alternating. The **tensor product** of U and V is defined to be

$$U \otimes V = \operatorname{Span} \{ u \otimes v | u \in U, v \in V \} \subset \operatorname{Bilin}(U^* \times V^*, \mathbf{F}).$$

We define the spaces of 2-tensors, symmetric 2-tensors, and alternating 2-tensors on U to be

$$T^{2}U = U \otimes U$$

$$S^{2}U = \left\{ S \in T^{2}U \mid S \text{ is symmetric} \right\}$$

$$\Lambda^{2}U = \left\{ A \in T^{2}U \mid A \text{ is alternating} \right\}$$

Suppose that U and V are finite-dimensional, and let $\mathcal{U} = \{u_1, \dots, u_n\}$ and $\mathcal{V} = \{v_1, \dots, v_m\}$ be bases.

(a) Show that $\{u_i \otimes v_j | 1 \le i \le n, 1 \le j \le m\}$ is a basis for $U \otimes V$ and that $U \otimes V = \text{Bilin}(U^* \times V^*, \mathbf{F})$.

- (b) Show that $\{u_i \odot u_j | 1 \le i \le j \le n\}$ is a basis for S^2U .
- (c) Show that $\{u_i \wedge u_j | 1 \leq i < j \leq n\}$ is a basis for $\Lambda^2 U$.