1: (a) Let A be a set. For each $\alpha \in A$, let $p_{\alpha} \in \mathbf{R}^{n}$, let U_{α} be a vector space in \mathbf{R}^{n} , and let $P = \bigcap_{\alpha \in A} (p_{\alpha} + U_{\alpha})$.

Show that if P is not empty then it is an affine space in \mathbb{R}^n .

Solution: Let $U = \bigcap_{\alpha \in A} U_{\alpha}$. We claim that U is a vector space in \mathbb{R}^n . Since each U_{α} is a vector space in \mathbb{R}^n , we have $0 \in U_{\alpha}$ for all $\alpha \in A$, and hence $0 \in U$. Let $u, v \in U$ and let $t \in \mathbb{R}$. Then for all $\alpha \in A$ we have $u \in U_{\alpha}$ and $v \in U_{\alpha}$ and so (since U_{α} is a vector space) we have $tu \in U_{\alpha}$ and $(u+v) \in U_{\alpha}$. Since $tu \in U_{\alpha}$ and $(u+v) \in U_{\alpha}$ for all $\alpha \in A$, we have $tu \in U$ and $(u+v) \in U_{\alpha}$ for all $\alpha \in A$, we have $tu \in U$ and $(u+v) \in U$. Thus U is a vector space as claimed.

Suppose that P is not empty and choose $p \in P$. For each $\alpha \in A$, we have $p \in p_{\alpha} + U_{\alpha}$ so we can choose $u_{\alpha} \in U_{\alpha}$ so that $p = p_{\alpha} + u_{\alpha}$. We claim that P = p + U. To show that $P \subset p + U$, let $x \in P$. For each $\alpha \in A$, we have $x \in p_{\alpha} + U_{\alpha}$ so we can choose $v_{\alpha} \in U_{\alpha}$ so that $x = p_{\alpha} + v_{\alpha}$. Let u = x - p. For each $\alpha \in A$ we have $u = x - p = (p_{\alpha} + v_{\alpha}) - (p_{\alpha} + u_{\alpha}) = v_{\alpha} - u_{\alpha} \in U_{\alpha}$. Since $u \in U_{\alpha}$ for all $\alpha \in A$, we have $u \in U$. Hence $x = p + u \in p + U$. Thus $P \subset p + U$. Conversely, to show that $p + U \subset P$, let $y \in p + U$. Choose $w \in U$ so that y = p + w. For each $\alpha \in A$ we have $w \in U_{\alpha}$, so $u_{\alpha} + w \in U_{\alpha}$ and hence $y = p + w = p_{\alpha} + u_{\alpha} + w \in p_{\alpha} + U_{\alpha}$. Since $y \in p_{\alpha} + U_{\alpha}$ for all $\alpha \in A$, we have $y \in P$. Thus $p + U \subset P$.

(b) Let
$$p = \begin{pmatrix} 1\\3\\1\\2\\2 \end{pmatrix}$$
, $A = \begin{pmatrix} 2 & 3 & 1\\1 & 2 & 0\\2 & 4 & 1\\3 & 5 & 2\\1 & 2 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 2 & 1 & -1 & -2\\1 & -3 & 0 & -1 & 3 \end{pmatrix}$ and $q = \begin{pmatrix} 1\\-3 \end{pmatrix}$, and let $P = p + \text{Col}A$ and

 $Q = \{x \in \mathbf{R}^5 | Bx = q\}$. Show that $P \cap Q$ is not empty and find its dimension.

Solution: To have $x \in P \cap Q$, we need $x \in P = p + \text{Col}A$ so we must have x = p + Ay for some $y \in \mathbb{R}^3$, and we need $x \in Q$ so we must have Bx = q, that is B(p + Ay) = q or equivalently BAy = q - Bp. We solve the equation BAy = q - Bp for y. We have

$$BA = \begin{pmatrix} 1 & 2 & 1 & -1 & -2 \\ 1 & -3 & 0 & -1 & 3 \end{pmatrix} \begin{pmatrix} 2 & 3 & 1 \\ 1 & 2 & 0 \\ 2 & 4 & 1 \\ 3 & 5 & 2 \\ 1 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & -2 \\ -1 & -2 & 2 \end{pmatrix}$$
$$q - Bp = \begin{pmatrix} 1 \\ -3 \end{pmatrix} - \begin{pmatrix} 1 & 2 & 1 & -1 & -2 \\ 1 & -3 & 0 & -1 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \\ 1 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ -3 \end{pmatrix} - \begin{pmatrix} 2 \\ -4 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$
$$(BA|q - Bp) = \begin{pmatrix} 1 & 2 & -2 \\ -1 & -2 & 2 \\ -1 & -2 & 2 \\ -1 & -2 & 2 \\ 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & -2 \\ 0 & 0 & 0 \\ 0 \end{pmatrix}$$
$$y = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} + s \begin{pmatrix} -2 \\ 1 \\ 0 \\ 1 \end{pmatrix} + t \begin{pmatrix} 2 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$
$$x = p + Ay = \begin{pmatrix} 1 \\ 3 \\ 1 \\ 2 \\ 2 \end{pmatrix} + \begin{pmatrix} 2 & 3 & 1 \\ 1 & 2 & 0 \\ 2 & 4 & 1 \\ 3 & 5 & 2 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} + s \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ -1 \\ -1 \\ 1 \end{pmatrix} + s \begin{pmatrix} -1 \\ 0 \\ 0 \\ -1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 5 \\ 2 \\ 5 \\ 8 \\ 3 \end{pmatrix}.$$

Thus $P \cap Q$ contains the point $(-1, 2, -1, -1, 1)^t$ and is 2-dimensional.

2: For two affine spaces P and Q in \mathbb{R}^n , the **distance** between P and Q is defined to be

$$\operatorname{dist}(P,Q) = \min\left\{\operatorname{dist}(x,y) \middle| x \in P, y \in Q\right\}.$$

(a) Let p and q be points in \mathbb{R}^n , let U and V be subspaces of \mathbb{R}^n , and let P = p + U and Q = q + V. Show that

$$\operatorname{dist}(P,Q) = \left|\operatorname{Proj}_{(U+V)^{\perp}}(p-q)\right|.$$

Solution: We have

$$\begin{aligned} \operatorname{dist}(P,Q) &= \min \left\{ \operatorname{dist}(x,y) \middle| x \in P, y \in Q \right\} \\ &= \min \left\{ \operatorname{dist}(p+u,q+v) \middle| u \in U, v \in V \right\} \\ &= \min \left\{ |(q+v) - (p+u)| \middle| u \in U, v \in V \right\} \\ &= \min \left\{ |(q-p) - (u-v)| \middle| u \in U, v \in V \right\} \\ &= \min \left\{ |(q-p) - w| \middle| w \in U + V \right\} \\ &= \left| (q-p) - \operatorname{Proj}_{U+V}(q-p) \right| \\ &= \left| \operatorname{Proj}_{(U+V)^{\perp}}(q-p) \right| \end{aligned}$$

where, on the second last line, we used the fact that $\operatorname{Proj}_{U+V}(q-p)$ is the (unique) point on U+V which is nearest to q-p.

(b) Let $p = (1, 2, 4, 3)^t$, $u_1 = (1, 2, 0, 1)^t$, $u_2 = (3, 5, 1, 2)^t$, $q = (4, 3, 1, 2)^t$, $v_1 = (2, 3, 2, -1)^t$, $v_2 = (1, 3, 1, -2)^t$. Find the distance between the plane $x = p + t_1u_1 + t_2u_2$ and the plane $x = q + s_1v_1 + s_2v_2$.

Solution: Let $A = (u_1, u_2) \in M_{4\times 2}$ and $B = (v_1, v_2) \in M_{4\times 2}$, and let $U = \operatorname{Col}(A)$ and $V = \operatorname{Col}(B)$, so that the given two planes are P = p + U and Q = q + V. Note that $(U + V)^{\perp} = (\operatorname{Col}(A + \operatorname{Col}(B))^{\perp} = \operatorname{Col}(A, B)^{\perp} = \operatorname{Null}(C)$ where $C = (A, B)^t$. We have

$$C = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 3 & 5 & 1 & 2 \\ 2 & 3 & 2 & -1 \\ 1 & 3 & 1 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 1 & -2 & 3 \\ 0 & 1 & 1 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 2 & -4 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

so that $(U+V)^{\perp} = \text{Null}(C) = \text{Span}\{w\}$ where $w = (-3, 1, 2, 1)^t$. Writing $x = q - p = (3, 1, -3, -1)^t$, we have

$$\operatorname{Proj}_{(U+V)^{\perp}}(q-p) = \operatorname{Proj}_{w}(x) = \frac{w \cdot x}{|w|^{2}} w = \frac{-15}{15} \begin{pmatrix} -3\\1\\2\\1 \end{pmatrix} = \begin{pmatrix} 3\\-1\\-2\\-1 \end{pmatrix}$$

and so

$$\operatorname{dist}(P,Q) = \left|\operatorname{Proj}_{(U+V)^{\perp}}(q-p)\right| = \sqrt{15} \,.$$

3: For two non-trivial vector spaces U and V in \mathbb{R}^n , we define the **angle** between U and V, which we write as angle(U, V), as follows. If $U \subset V$ or $V \subset U$ then angle(U, V) = 0, otherwise if $U \cap V = \{0\}$ then

$$\operatorname{angle}(U, V) = \min \left\{ \theta(u, v) \middle| 0 \neq u \in U, 0 \neq v \in V \right\},\$$

and if $U \cap V = W \neq \{0\}$ then $angle(U, V) = angle(U \cap W^{\perp}, V \cap W^{\perp})$. We define the angle between two affine spaces in \mathbb{R}^n to be the angle between their associated vector spaces.

(a) Let $0 \neq u \in \mathbf{R}^n$, let $U = \text{Span}\{u\}$, and let V be a non-trivial vector space in \mathbf{R}^n . Show that

$$\operatorname{angle}(U, V) = \cos^{-1} \left| \operatorname{Proj}_{V} \left(\frac{u}{|u|} \right) \right|$$

Solution: Suppose first that $u \in V$. On the one hand, since $U \subset V$, we have $\operatorname{angle}(U, V) = 0$, and on the other hand, we have $\operatorname{Proj}_{V} \frac{u}{|u|} = \frac{u}{|v|}$ so $\cos^{-1} |\operatorname{Proj}_{V} \frac{u}{|u|}| = \cos^{-1}(1) = 0$. Thus $\operatorname{angle}(U, V) = 0 = \cos^{-1} |\operatorname{Proj}_{V} \frac{u}{|u|}|$.

Next, suppose that $u \in V^{\perp}$. On the one hand, we have $tu \cdot v = 0$ for all $t \in \mathbf{R}$ and all $v \in V$, and so $\theta(tu, v) = \frac{\pi}{2}$ for all $0 \neq t \in \mathbf{R}$ and all $0 \neq v \in V$, and on the other hand we have $\operatorname{Proj}_{V |\overline{u}|} = 0$ so $\cos^{-1} |\operatorname{Proj}_{V |\overline{u}|}| = \cos^{-1}(0) = \frac{\pi}{2}$. Thus $\operatorname{angle}(U, V) = \frac{\pi}{2} = \cos^{-1} |\operatorname{Proj}_{V |\overline{u}|}|$.

Finally, suppose that $u \notin V$ and $u \notin V^{\perp}$. Let $v = \operatorname{Proj}_{V}(u)$ and let $\theta = \theta(u, v)$. Note that $v \neq 0$ (since $u \notin V^{\perp}$) and $v \neq u$ (since $u \notin V$). Using trigonometric ratios (for the triangle [0, v, u]) we have

$$\cos \theta = \frac{|v|}{|u|} = \frac{1}{|u|} \left| \operatorname{Proj}_{V}(u) \right| = \left| \operatorname{Proj}_{V} \frac{u}{|u|} \right|.$$

Thus we must show that $angle(U, V) = \theta$. Equivalently, we must show that

$$\theta = \theta(u, v) \le \theta(tu, w)$$
 for all $0 \ne t \in \mathbf{R}, 0 \ne w \in V$.

First we claim that $0 < \theta < \frac{\pi}{2}$. Since $v \neq 0$ we have $\cos \theta = \frac{|v|}{|u|} > 0$. Since $v \neq u$ so that $|v - u| \neq 0$, by Pythagoras' Theorem we have $|u|^2 = |v|^2 + |v - u|^2 > |v|^2$ so that |u| > |v|, and so $\cos \theta = \frac{|v|}{|u|} < 1$. Since $0 < \cos \theta < 1$ we have $0 < \theta < \frac{\pi}{2}$, as claimed.

Let $0 \neq t \in \mathbf{R}$ and let $0 \neq w \in V$. Suppose first that $w \in \text{Span}\{v\}$, say w = sv with $0 \neq s \in \mathbf{R}$. Then we have

$$\theta(tu, w) = \theta(tu, sv) = \begin{cases} \theta(u, v) & \text{if } st > 0\\ \pi - \theta(u, v) & \text{if } st < 0 \end{cases} = \begin{cases} \theta & \text{if } st > 0\\ \pi - \theta & \text{if } st < 0 \end{cases}$$

Since $\theta \in (0, \frac{\pi}{2})$, we have $\pi - \theta \in (\frac{\pi}{2}, \pi)$, so $\pi - \theta > \theta$, and hence $\theta(tu, w) \ge \theta = \theta(u, v)$.

Now suppose that $w \notin \text{Span}\{v\}$. Let $y = \text{Proj}_w(u)$. Note that if y = 0 then $tu \cdot w = u \cdot w = 0$ so we have $\theta(tu, w) = \frac{\pi}{2} > \theta$. Suppose that $y \neq 0$. As above (where we showed that $0 < \theta < \frac{\pi}{2}$) we have $0 < \theta(u, y) < \frac{\pi}{2}$. Since v is the point in V nearest to u, we know that |u - y| > |u - v|, so using trigonometric ratios (for the triangle [0, y, u]) gives

$$\sin\left(\theta(u,y)\right) = \frac{|u-y|}{|u|} > \frac{|u-v|}{|u|} = \sin\left(\theta(u,v)\right).$$

Thus $0 < \theta(u, v) < \theta(u, y) < \frac{\pi}{2}$. Note that $w \in \text{Span}\{y\}$, say w = sy where $0 \neq s \in \mathbf{R}$. When st > 0 we have $\theta(tu, w) = \theta(tu, sy) = \theta(u, y) > \theta(u, v)$, and when st < 0 we have $\theta(tu, w) = \theta(tu, sy) = \pi - \theta(u, y) > \pi - \frac{\pi}{2} = \frac{\pi}{2} > \theta(u, v)$.

(b) Let $u_1 = (1, -2, 1, -3)^t$, $u_2 = (3, 2, 1, -1)^t$, $v_1 = (1, -1, 0, 1)^t$, $v_2 = (1, -3, 2, -1)^t$ and $v_3 = (2, -1, 1, -1)^t$. Find the angle between $U = \text{Span}\{u_1, u_2\}$ and $V = \text{Span}\{v_1, v_2, v_3\}$.

Solution: Let $A = (u_1, u_2) \in M_{4\times 2}$ and $B = (v_1, v_2, v_3) \in M_{4\times 3}$ so that $U = \operatorname{Col}(A)$ and $V = \operatorname{Col}(B)$. Let us find a basis for $V^{\perp} = \operatorname{Null}(B^t)$. We have

$$B^{t} = \begin{pmatrix} 1 & -1 & 0 & 1 \\ 1 & -3 & 2 & -1 \\ 2 & -1 & 1 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & 2 & -2 & 2 \\ 0 & 1 & 1 & -3 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 & -2 \\ 0 & 1 & 1 & -3 \\ 0 & 0 & 4 & -8 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 & -2 \\ 0 & 1 & 1 & -3 \\ 0 & 0 & 1 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -2 \end{pmatrix}$$
so V^{\perp} has basis $\{(0, 1, 2, 1)^{t}\}$. Thus $V = \text{Null}(C)$ where $C = (0 \quad 1 \quad 2 \quad 1) \in M_{1 \times 4}$.

Now let us find a basis for $W = U \cap V = \operatorname{Col}(A) \cap \operatorname{Null}(C)$. To have $x \in W$ we need $x \in \operatorname{Col}(A)$, say x = At, and we need $x \in \operatorname{Null}(C)$, that is 0 = Cx = CAt, so $t \in \operatorname{Null}(CA)$. We have

$$CA = \begin{pmatrix} 0 & 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ -2 & 2 \\ 1 & 1 \\ -3 & -1 \end{pmatrix} = \begin{pmatrix} -3 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 \end{pmatrix}$$

so we have $\operatorname{Null}(CA) = \operatorname{Span}\left\{ \begin{pmatrix} 1\\1 \end{pmatrix} \right\}$ and $W = \operatorname{Span}\left\{ A \begin{pmatrix} 1\\1 \end{pmatrix} \right\}$. Note that

$$A\begin{pmatrix} 1\\1 \end{pmatrix} = \begin{pmatrix} 1 & 3\\-2 & 2\\1 & 1\\-3 & -1 \end{pmatrix} \begin{pmatrix} 1\\1 \end{pmatrix} = \begin{pmatrix} 4\\0\\2\\-4 \end{pmatrix} = 2\begin{pmatrix} 2\\0\\1\\-2 \end{pmatrix},$$

so we have $W = \text{Span}\{(2, 0, 1, -2)^t\}$ and hence $W^{\perp} = \text{Null}(D)$ where $D = (2 \ 0 \ 1 \ -2)$.

Next, consider $U \cap W^{\perp}$ and $V \cap W^{\perp}$. To have $x \in U \cap W^{\perp} = \operatorname{Col}(A) \cap \operatorname{Null}(D)$, we need $x \in \operatorname{Col}(A)$, say x = At, and we need $x \in \operatorname{Null}(D)$ so 0 = Dx = DAt. We have

$$DA = \begin{pmatrix} 2 & 0 & 1 & -2 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ -2 & 2 \\ 1 & 1 \\ -3 & -1 \end{pmatrix} = \begin{pmatrix} 9 & 9 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 \end{pmatrix}$$

Null $(DA) = \text{Span} \left\{ \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\}$ and $U \cap W^{\perp} = \text{Span} \left\{ A \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\}$. Note that
$$A \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ -2 & 2 \\ 1 & 1 \\ -3 & -1 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ 0 \\ 2 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 2 \\ 0 \\ 1 \end{pmatrix} ,$$

 \mathbf{SO}

so $U \cap W^{\perp} = \text{Span}\{u\}$ where $u = (1, 2, 0, 1)^t$. Also, $V \cap W^{\perp} = \text{Null}(C) \cap \text{Null}(D) = \text{Null}\begin{pmatrix} C \\ D \end{pmatrix}$, so we have

$$\begin{split} (V \cap W^{\perp})^{\perp} &= \operatorname{Col}(E), \text{ where } E = \begin{pmatrix} C \\ D \end{pmatrix}^{t} = \begin{pmatrix} 0 & 2 \\ 1 & 0 \\ 2 & 1 \\ 1 & -2 \end{pmatrix}.\\ \text{Since } E^{t}E &= \begin{pmatrix} 0 & 1 & 2 & 1 \\ 2 & 0 & 1 & -2 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 1 & 0 \\ 2 & 1 \\ 1 & -2 \end{pmatrix} = \begin{pmatrix} 6 & 0 \\ 0 & 6 \end{pmatrix} = 6I, \text{ we have} \\ \\ \operatorname{Proj}_{(V \cap W^{\perp})^{\perp}}(u) &= E(E^{t}E)^{-1}E^{t}u = \begin{pmatrix} 0 & 2 \\ 1 & 0 \\ 2 & 1 \\ 1 & -2 \end{pmatrix} \cdot \frac{1}{6}I \cdot \begin{pmatrix} 0 & 1 & 2 & 1 \\ 2 & 0 & 1 & -2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 0 \\ 1 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 0 & 2 \\ 1 & 0 \\ 2 & 1 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \end{pmatrix}, \\ \\ \operatorname{Proj}_{V \cap W^{\perp}}(u) &= u - \operatorname{Proj}_{(V \cap W^{\perp})^{\perp}}(u) = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 2 \\ 3 \\ -2 \\ 1 \end{pmatrix}, \text{ and} \\ \\ \operatorname{angle}(U, V) &= \cos^{-1} \frac{|\operatorname{Proj}_{V \cap W^{\perp}}(u)|}{|u|} = \cos^{-1} \frac{\frac{1}{2}\sqrt{18}}{\sqrt{6}} = \cos^{-1} \frac{\sqrt{3}}{2} = \frac{\pi}{6}. \end{split}$$

4: Let a_0, a_1, \dots, a_l be points in \mathbf{R}^n . Show that $[a_0, a_1, \dots, a_l] = \Big\{ \sum_{i=0}^l s_i a_i \Big| 0 \le s_i \in \mathbf{R}, \sum_{i=0}^l s_i = 1 \Big\}.$

Solution: Let $S = \left\{ \sum_{i=0}^{l} s_i a_i \middle| 0 \le s_i \in \mathbf{R}, \sum_{i=0}^{l} s_i = 1 \right\}$. Note that each $a_k \in S$. We claim that S is convex.

Let $x, y \in S$, say $x = \sum_{i=0}^{l} s_i a_i$ and $y = \sum_{i=0}^{l} t_i a_i$ where $0 \le s_i, t_i$ and $\sum s_i = \sum t_i = 1$. Let $z \in [x, y]$, say z = x + r(y - x) where $0 \le r \le 1$. Then we have $z = \sum s_i a_i + r(\sum t_i a_i - \sum s_i a_i) = \sum r_i a_i$ where $r_i = s_i + r(t_i - s_i)$ for $i = 0, 1, \dots, l$. Since $0 \le s_i$ and $0 \le t_i$ and $r_i \in [s_i, t_i]$ (so r_i is between s_i and t_i), we must have $r_i \ge 0$. Also, we have $\sum r_i = \sum s_i + r(\sum t_i - \sum s_i) = 1 + r(1 - 1) = 1$, and so $z = \sum r_i a_i \in S$. Thus S is convex, as claimed. Since S is a convex set which contains all the points a_0, a_1, \dots, a_l , we have $[a_0, a_1, \dots, a_l] \subset S$.

To show that $S \subset [a_0, a_1, \dots, a_l]$, we shall show that S is contained in every convex set which contains a_0, a_1, \dots, a_l . Let T be a convex set with $a_i \in T$ for all $i = 0, 1, \dots, l$. For each $k = 0, 1, \dots, l$, let $S_k = \left\{ \sum_{i=0}^k s_i a_i \middle| 0 \le s_i \in \mathbf{R}, \sum_{i=0}^k s_i = 1 \right\}$. We claim that each $S_k \subset T$ (and in particular, $S = S_l \subset T$). We

have $S_0 = \{a_0\} \subset T$. Fix $k \ge 1$ and suppose, inductively, that $S_{k-1} \subset T$. Let $x \in S_k$, say $s = \sum_{i=0}^k s_i a_i$ with

 $0 \le s_i, \sum s_i = 1$. If $s_k = 1$ then $x = a_k$ and so $x \in T$. Suppose that $s_k \ne 1$. Let $y = \sum_{i=0}^{k-1} \frac{s_i}{1-s_k} a_i$. Note

that each $\frac{s_i}{1-s_k} \ge 0$ and that $\sum_{i=0}^{k-1} \frac{s_i}{1-s_k} = \frac{1}{1-s_k} \sum_{i=0}^{k-1} s_i = \frac{1}{1-s_k} (1-s_k) = 1$ and so we have $y \in S_{k-1} \subset T$. Also, we have $(1-s_k)y = \sum_{i=0}^{k-1} s_i a_i = x - s_k a_k$ and so $x = (1-s_k)y + s_k a_k = y + s_k (a_k - y) \in [y, a_k]$. Since $y \in S_{k-1} \subset T$ and $a_k \in T$ and T is convex, we have $x \in T$. Thus $S_k \subset T$. By induction, we have $S_k \subset T$ for all $k = 0, 1, \dots, l$, and in particular $S = S_l \subset T$. 5: Let $S = [a_0, a_1, \dots, a_l]$ be an *l*-simplex in \mathbb{R}^n . for each $0 \le j < k \le n$, the altitudinal hyperplane $H_{j,k}$ is the (l-1)-dimensional affine space in $\langle a_0, a_1, \dots, a_l \rangle$ which is perpendicular to the edge $[a_j, a_k]$ and which passes through the centroid of the (l-2)-simplex $[a_0, a_1, \dots, \check{a}_j, \dots, \check{a}_k, \dots, a_l]$, (where the check mark above the points a_j and a_k indicates that these points are excluded). Show that the altitudinal hyperplanes have a unique point of intersection. This point is denoted by h and is called the **orthocenter** of the *l*-simplex S.

Solution: Let $u_k = a_k - a_0$ for $k = 1, 2, \dots, l$, and let $A = (u_1, u_2, \dots, u_l)$. To have $x \in \langle a_0, a_1, \dots, a_l \rangle$ we need $x = a_0 + Ay$ for some $y \in \mathbf{R}^l$. Let $g_{j,k}$ denote the centroid of the simplex $[a_0, \dots, \check{a}_j, \dots, \check{a}_k, \dots, a_n]$. Note that

$$g_{0,k} = \frac{1}{l-1} \sum_{i \neq 0,k} a_i = \frac{1}{l-1} \left(\sum_{i=1}^{l} a_i - a_k \right) = a_0 + \frac{1}{l-1} \left(\sum_{i=1}^{l} u_i - u_k \right) = a_0 + \frac{1}{l-1} \left(Ac - u_k \right)$$

where c is the vector $c = (1, 1, \dots, 1)^t$, and so for each $k = 1, 2, \dots, l$ we have

$$x \in H_{0,k} \iff (x - g_{0,k}) \cdot (a_k - a_0) = 0$$
$$\iff \left(\left(a_0 + Ay \right) - \left(a_0 + \frac{1}{l-1} (Ac - u_k) \right) \right) \cdot u_k = 0$$
$$\iff Ay \cdot u_k = \frac{1}{l-1} (Ac - u_k) \cdot u_k$$

and hence

$$x \in \bigcap_{k=1}^{l} H_{0,k} \iff A^{t}Ay = \frac{1}{l-1} \left(A^{t}Ac - v \right)$$

where v is the vector $v = (|u_1|^2, |u_2|^2, \dots, |u_l|^2)^t$. Since the simplex S is non-degenerate, $\{u_1, u_2, \dots, u_l\}$ is linearly independent, so rank $(A^tA) = \operatorname{rank}(A) = l$ and hence A^tA is invertible. Thus

$$x \in \bigcap_{k=1}^{l} H_{0,k} \iff y = \frac{1}{l-1} \left(c - (A^{t}A)^{-1}v \right).$$

This shows that the altitudinal hyperplanes $H_{0,k}$ for $k = 1, 2, \dots, l$ have a unique point of intersection, namely the point $x = a_0 + Ay$ where $y = \frac{1}{l-1} (c - (A^t A)^{-1} v)$.

It remains to show that the above point x lies on all the altitudinal hyperplanes $H_{j,k}$ for $1 \le j < k \le l$. Let $1 \le j < k \le l$. Note that

$$g_{j,k} = \frac{1}{l-1} \sum_{i \neq j,k} a_i = \frac{1}{l-1} \left(\sum_{i \neq 0,k} a_i - (a_j - a_0) \right) = g_{0,k} - \frac{1}{l-1} u_j$$

Similarly $g_{j,k} = g_{0,j} - \frac{1}{l-1}u_k$. Since $x \in H_{0,k}$ we have $(x - g_{0,k}) \cdot u_k = 0$, and since $x \in H_{0,j}$ we have $(x - g_{0,j}) \cdot u_j = 0$, and so

$$(x - g_{j,k}) \cdot (a_k - a_j) = (x - g_{j,k}) \cdot (u_k - u_j)$$

= $(x - g_{j,k}) \cdot u_k - (x - g_{j,k}) \cdot u_j$
= $(x - g_{0,k} + \frac{1}{l-1}u_j) \cdot u_k - (x - g_{0,j} + \frac{1}{l-1}u_k) \cdot u_j$
= $(x - g_{0,k}) \cdot u_k + \frac{1}{l-1}u_j \cdot u_k - (x - g_{0,j}) \cdot u_j - \frac{1}{l-1}u_k \cdot u_j$
= 0

hence $x \in H_{j,k}$, as required.

(b) Let $S = [a_0, a_1, \dots, a_l]$ be an *l*-simplex in \mathbb{R}^n . Let o, g and h be the circumcenter, the centroid, and the orthocenter of S. Show that g lies $\frac{l-1}{l+1}$ of the way along the line segment from o to h.

Solution: We know from class that $o = a_0 + At$ where $t = \frac{1}{2}(A^tA)^{-1}v$ with $v = (|u_1|^2, \dots, |u_l|^2)^t$, and we know from part (a) that $h = a_0 + Ay$ where $y = \frac{1}{l-1}(c - (A^tA)^{-1}v)$ with $c = (1, 1, \dots, 1)^t$, and so the point which lies $\frac{l-1}{l+1}$ of the way from o to h is the point

$$\begin{aligned} o + \frac{l-1}{l+1}(h-o) &= a_0 + At + \frac{l-1}{l+1}(Ay - At) = a_0 + \frac{2}{l+1}At - \frac{l-1}{l+1}Ay \\ &= a_0 + \frac{1}{l+1}A(A^tA)^{-1}v + \frac{l}{l+1}\left(A\left(c - (A^tA)^{-1}v\right)\right) \\ &= a_0 + \frac{1}{l+1}Ac = a_0 + \frac{1}{l+1}\sum_{i=1}^l u_i = a_0 + \frac{1}{l+1}\sum_{i=1}^l (a_i - a_0) \\ &= \frac{1}{l+1}\sum_{i=0}^l a_i \,, \end{aligned}$$

which is the centroid of S, as required.