
MATH 245 Linear Algebra 2, Solutions to Assignment 1

1: (a) Let A be a set. For each α ∈ A, let pα ∈ Rn, let Uα be a vector space in Rn, and let P =
⋂

α∈A

(
pα +Uα

)
.

Show that if P is not empty then it is an affine space in Rn.

Solution: Let U =
⋂

α∈A

Uα. We claim that U is a vector space in Rn. Since each Uα is a vector space in Rn,

we have 0 ∈ Uα for all α ∈ A, and hence 0 ∈ U . Let u, v ∈ U and let t ∈ R. Then for all α ∈ A we have
u ∈ Uα and v ∈ Uα and so (since Uα is a vector space) we have tu ∈ Uα and (u + v) ∈ Uα. Since tu ∈ Uα

and (u + v) ∈ Uα for all α ∈ A, we have tu ∈ U and (u + v) ∈ U . Thus U is a vector space as claimed.
Suppose that P is not empty and choose p ∈ P . For each α ∈ A, we have p ∈ pα + Uα so we can choose

uα ∈ Uα so that p = pα +uα. We claim that P = p+U . To show that P ⊂ p+U , let x ∈ P . For each α ∈ A,
we have x ∈ pα + Uα so we can choose vα ∈ Uα so that x = pα + vα. Let u = x − p. For each α ∈ A we
have u = x− p = (pα + vα)− (pα + uα) = vα − uα ∈ Uα. Since u ∈ Uα for all α ∈ A, we have u ∈ U . Hence
x = p+u ∈ p+U . Thus P ⊂ p+U . Conversely, to show that p+U ⊂ P , let y ∈ p+U . Choose w ∈ U so that
y = p + w. For each α ∈ A we have w ∈ Uα, so uα + w ∈ Uα and hence y = p + w = pα + uα + w ∈ pα + Uα.
Since y ∈ pα + Uα for all α ∈ A, we have y ∈ P . Thus p + U ⊂ P .

(b) Let p =


1
3
1
2
2

, A =


2 3 1
1 2 0
2 4 1
3 5 2
1 2 1

, B =
(

1 2 1 −1 −2
1 −3 0 −1 3

)
and q =

(
1
−3

)
, and let P = p + ColA and

Q =
{
x ∈ R5

∣∣Bx = q
}
. Show that P ∩Q is not empty and find its dimension.

Solution: To have x ∈ P ∩Q, we need x ∈ P = p + ColA so we must have x = p + Ay for some y ∈ R3, and
we need x ∈ Q so we must have Bx = q, that is B(p + Ay) = q or equivalently BAy = q−Bp. We solve the
equation BAy = q −Bp for y. We have

BA =
(

1 2 1 −1 −2
1 −3 0 −1 3

) 
2 3 1
1 2 0
2 4 1
3 5 2
1 2 1

 =
(

1 2 −2
−1 −2 2

)

q −Bp =
(

1
−3

)
−

(
1 2 1 −1 −2
1 −3 0 −1 3

) 
1
3
1
2
2

 =
(

1
−3

)
−

(
2
−4

)
=

(
−1
1

)

(
BA

∣∣q −Bp
)

=
(

1 2 −2
−1 −2 2

∣∣∣∣−1
1

)
∼

(
1 2 −2
0 0 0

∣∣∣∣−1
0

)

y =

−1
0
0

 + s

−2
1
0

 + t

 2
0
1



x = p + Ay =


1
3
1
2
2

 +


2 3 1
1 2 0
2 4 1
3 5 2
1 2 1


−1

0
0

 + s

−2
1
0

 + t

 2
0
1

 =


−1
2
−1
−1
1

 + s


−1
0
0
−1
0

 + t


5
2
5
8
3

 .

Thus P ∩Q contains the point (−1, 2,−1,−1, 1)t and is 2-dimensional.



2: For two affine spaces P and Q in Rn, the distance between P and Q is defined to be

dist(P,Q) = min
{

dist(x, y)
∣∣∣x ∈ P, y ∈ Q

}
.

(a) Let p and q be points in Rn, let U and V be subspaces of Rn, and let P = p + U and Q = q + V . Show
that

dist(P,Q) =
∣∣∣Proj

(U+V )⊥
(p− q)

∣∣∣ .

Solution: We have
dist(P,Q) = min

{
dist(x, y)

∣∣x ∈ P, y ∈ Q
}

= min
{
dist(p + u, q + v)

∣∣u ∈ U, v ∈ V
}

= min
{
|(q + v)− (p + u)|

∣∣u ∈ U, v ∈ V
}

= min
{
|(q − p)− (u− v)|

∣∣u ∈ U, v ∈ V
}

= min
{
|(q − p)− w|

∣∣w ∈ U + V
}

=
∣∣(q − p)− Proj

U+V
(q − p)

∣∣
=

∣∣Proj
(U+V )⊥

(q − p)
∣∣

where, on the second last line, we used the fact that Proj
U+V

(q − p) is the (unique) point on U + V which
is nearest to q − p.

(b) Let p = (1, 2, 4, 3)t, u1 = (1, 2, 0, 1)t, u2 = (3, 5, 1, 2)t, q = (4, 3, 1, 2)t, v1 = (2, 3, 2,−1)t, v2 = (1, 3, 1,−2)t.
Find the distance between the plane x = p + t1u1 + t2u2 and the plane x = q + s1v1 + s2v2.

Solution: Let A = (u1, u2) ∈ M4×2 and B = (v1, v2) ∈ M4×2, and let U = Col(A) and V = Col(B), so that
the given two planes are P = p+U and Q = q +V . Note that (U +V )⊥ = (ColA+ColB)⊥ = Col(A,B)⊥ =
Null(C) where C = (A,B)t. We have

C =


1 2 0 1
3 5 1 2
2 3 2 −1
1 3 1 −2

 ∼


1 2 0 1
0 1 −1 1
0 1 −2 3
0 1 1 −1

 ∼


1 0 2 −1
0 1 −1 1
0 0 1 −2
0 0 2 −4

 ∼


1 0 0 3
0 1 0 −1
0 0 1 −2
0 0 0 0


so that (U + V )⊥ = Null(C) = Span{w} where w =

(
− 3, 1, 2, 1

)t. Writing x = q − p = (3, 1,−3,−1)t, we
have

Proj
(U+V )⊥

(q − p) = Proj
w
(x) =

w .x

|w|2
w =

−15
15


−3
1
2
1

 =


3
−1
−2
−1


and so

dist(P,Q) =
∣∣Proj

(U+V )⊥
(q − p)

∣∣ =
√

15 .



3: For two non-trivial vector spaces U and V in Rn, we define the angle between U and V , which we write as
angle(U, V ), as follows. If U ⊂ V or V ⊂ U then angle(U, V ) = 0, otherwise if U ∩ V = {0} then

angle(U, V ) = min
{

θ(u, v)
∣∣∣0 6= u ∈ U, 0 6= v ∈ V

}
,

and if U ∩ V = W 6= {0} then angle(U, V ) = angle(U ∩ W⊥, V ∩ W⊥). We define the angle between two
affine spaces in Rn to be the angle between their associated vector spaces.

(a) Let 0 6= u ∈ Rn, let U = Span{u}, and let V be a non-trivial vector space in Rn. Show that

angle(U, V ) = cos−1
∣∣∣Proj

V

( u

|u|

)∣∣∣ .

Solution: Suppose first that u ∈ V . On the one hand, since U ⊂ V , we have angle(U, V ) = 0, and on the other
hand, we have Proj

V

u
|u| = u

|u| so cos−1
∣∣Proj

V

u
|u|

∣∣ = cos−1(1) = 0. Thus angle(U, V ) = 0 = cos−1
∣∣Proj

V

u
|u|

∣∣.
Next, suppose that u ∈ V ⊥. On the one hand, we have tu. v = 0 for all t ∈ R and all v ∈ V , and

so θ(tu, v) = π
2 for all 0 6= t ∈ R and all 0 6= v ∈ V , and on the other hand we have Proj

V

u
|u| = 0 so

cos−1
∣∣Proj

V

u
|u|

∣∣ = cos−1(0) = π
2 . Thus angle(U, V ) = π

2 = cos−1
∣∣Proj

V

u
|u|

∣∣.
Finally, suppose that u /∈ V and u /∈ V ⊥. Let v = Proj

V
(u) and let θ = θ(u, v). Note that v 6= 0 (since

u /∈ V ⊥) and v 6= u (since u /∈ V ). Using trigonometric ratios (for the triangle [0, v, u]) we have

cos θ =
|v|
|u|

= 1
|u|

∣∣Proj
V

(u)
∣∣ =

∣∣Proj
V

u
|u|

∣∣ .

Thus we must show that angle(U, V ) = θ. Equivalently, we must show that

θ = θ(u, v) ≤ θ(tu, w) for all 0 6= t ∈ R, 0 6= w ∈ V .

First we claim that 0 < θ < π
2 . Since v 6= 0 we have cos θ = |v|

|u| > 0. Since v 6= u so that |v − u| 6= 0,

by Pythagoras’ Theorem we have |u|2 = |v|2 + |v − u|2 > |v|2 so that |u| > |v|, and so cos θ = |v|
|u| < 1. Since

0 < cos θ < 1 we have 0 < θ < π
2 , as claimed.

Let 0 6= t ∈ R and let 0 6= w ∈ V . Suppose first that w ∈ Span{v}, say w = sv with 0 6= s ∈ R. Then
we have

θ(tu, w) = θ(tu, sv) =

{
θ(u, v) if st > 0

π − θ(u, v) if st < 0
=

{
θ if st > 0

π − θ if st < 0

Since θ ∈
(
0, π

2

)
, we have π − θ ∈

(
π
2 , π

)
, so π − θ > θ, and hence θ(tu, w) ≥ θ = θ(u, v).

Now suppose that w /∈ Span{v}. Let y = Proj
w
(u). Note that if y = 0 then tu.w = u.w = 0 so

we have θ(tu, w) = π
2 > θ. Suppose that y 6= 0. As above (where we showed that 0 < θ < π

2 ) we have
0 < θ(u, y) < π

2 . Since v is the point in V nearest to u, we know that |u−y| > |u−v|, so using trigonometric
ratios (for the triangle [0, y, u]) gives

sin
(
θ(u, y)

)
=
|u− y|
|u|

>
|u− v|
|u|

= sin
(
θ(u, v)

)
.

Thus 0 < θ(u, v) < θ(u, y) < π
2 . Note that w ∈ Span{y}, say w = sy where 0 6= s ∈ R. When st > 0 we

have θ(tu, w) = θ(tu, sy) = θ(u, y) > θ(u, v), and when st < 0 we have θ(tu, w) = θ(tu, sy) = π − θ(u, y) >
π − π

2 = π
2 > θ(u, v).



(b) Let u1 = (1,−2, 1,−3)t, u2 = (3, 2, 1,−1)t, v1 = (1,−1, 0, 1)t, v2 = (1,−3, 2,−1)t and v3 = (2,−1, 1,−1)t.
Find the angle between U = Span{u1, u2} and V = Span{v1, v2, v3}.
Solution: Let A = (u1, u2) ∈ M4×2 and B = (v1, v2, v3) ∈ M4×3 so that U = Col(A) and V = Col(B). Let
us find a basis for V ⊥ = Null(Bt). We have

Bt =

 1 −1 0 1
1 −3 2 −1
2 −1 1 −1

 ∼

 1 −1 0 1
0 2 −2 2
0 1 1 −3

 ∼

 1 0 1 −2
0 1 1 −3
0 0 4 −8

 ∼

 1 0 1 −2
0 1 1 −3
0 0 1 −2

 ∼

 1 0 0 0
0 1 0 −1
0 0 1 −2


so V ⊥ has basis

{
(0, 1, 2, 1)t

}
. Thus V = Null(C) where C = ( 0 1 2 1 ) ∈ M1×4.

Now let us find a basis for W = U ∩ V = Col(A) ∩ Null(C). To have x ∈ W we need x ∈ Col(A), say
x = At, and we need x ∈ Null(C), that is 0 = Cx = CAt, so t ∈ Null(CA). We have

CA = ( 0 1 2 1 )


1 3
−2 2
1 1
−3 −1

 = (−3 3 ) ∼ ( 1 −1 )

so we have Null(CA) = Span
{(

1
1

)}
and W = Span

{
A

(
1
1

)}
. Note that

A

(
1
1

)
=


1 3
−2 2
1 1
−3 −1

 (
1
1

)
=


4
0
2
−4

 = 2


2
0
1
−2

 ,

so we have W = Span
{
(2, 0, 1,−2)t

}
and hence W⊥ = Null(D) where D = ( 2 0 1 −2 ).

Next, consider U ∩W⊥ and V ∩W⊥. To have x ∈ U ∩W⊥ = Col(A) ∩ Null(D), we need x ∈ Col(A),
say x = At, and we need x ∈ Null(D) so 0 = Dx = DAt. We have

DA = ( 2 0 1 −2 )


1 3
−2 2
1 1
−3 −1

 = ( 9 9 ) ∼ ( 1 1 )

so Null(DA) = Span
{(
−1
1

)}
and U ∩W⊥ = Span

{
A

(
−1
1

)}
. Note that

A

(
−1
1

)
=


1 3
−2 2
1 1
−3 −1

 (
−1
1

)
=


2
4
0
2

 = 2


1
2
0
1

 ,

so U ∩W⊥ = Span{u} where u = (1, 2, 0, 1)t. Also, V ∩W⊥ = Null(C) ∩Null(D) = Null
(

C
D

)
, so we have

(V ∩W⊥)⊥ = Col(E), where E =
(

C
D

)t

=


0 2
1 0
2 1
1 −2

.

Since EtE =
(

0 1 2 1
2 0 1 −2

) 
0 2
1 0
2 1
1 −2

 =
(

6 0
0 6

)
= 6I, we have

Proj
(V ∩W⊥)⊥

(u) = E(EtE)−1Etu =


0 2
1 0
2 1
1 −2

 · 1
6I ·

(
0 1 2 1
2 0 1 −2

) 
1
2
0
1

 = 1
6


0 2
1 0
2 1
1 −2

 (
3
0

)
= 1

2


0
1
2
1

 ,

Proj
V ∩W⊥

(u) = u− Proj
(V ∩W⊥)⊥

(u) =


1
2
1
1

− 1
2


0
1
2
1

 = 1
2


2
3
−2
1

 , and

angle(U, V ) = cos−1

∣∣Proj
V ∩W⊥

(u)
∣∣

|u|
= cos−1

1
2

√
18

√
6

= cos−1
√

3
2 = π

6 .



4: Let a0, a1, · · · , al be points in Rn. Show that
[
a0, a1, · · · , al

]
=

{ l∑
i=0

siai

∣∣∣0 ≤ si ∈ R,
l∑

i=0

si = 1
}

.

Solution: Let S =
{ l∑

i=0

siai

∣∣∣0 ≤ si ∈ R,
l∑

i=0

si = 1
}

. Note that each ak ∈ S. We claim that S is convex.

Let x, y ∈ S, say x =
l∑

i=0

siai and y =
l∑

i=0

tiai where 0 ≤ si, ti and
∑

si =
∑

ti = 1. Let z ∈ [x, y],

say z = x + r(y − x) where 0 ≤ r ≤ 1. Then we have z =
∑

siai + r
( ∑

tiai −
∑

siai

)
=

∑
riai where

ri = si + r(ti − si) for i = 0, 1, · · · , l. Since 0 ≤ si and 0 ≤ ti and ri ∈ [si, ti] (so ri is between si and ti), we
must have ri ≥ 0. Also, we have

∑
ri =

∑
si + r

( ∑
ti −

∑
si

)
= 1 + r(1− 1) = 1, and so z =

∑
riai ∈ S.

Thus S is convex, as claimed. Since S is a convex set which contains all the points a0, a1, · · · , al, we have
[a0, a1, · · · , al] ⊂ S.

To show that S ⊂ [a0, a1, · · · , al], we shall show that S is contained in every convex set which contains
a0, a1, · · · , al. Let T be a convex set with ai ∈ T for all i = 0, 1, · · · , l. For each k = 0, 1, · · · , l, let

Sk =
{ k∑

i=0

siai

∣∣∣0 ≤ si ∈ R,
k∑

i=0

si = 1
}

. We claim that each Sk ⊂ T (and in particular, S = Sl ⊂ T ). We

have S0 = {a0} ⊂ T . Fix k ≥ 1 and suppose, inductively, that Sk−1 ⊂ T . Let x ∈ Sk, say s =
k∑

i=0

siai with

0 ≤ si,
∑

si = 1. If sk = 1 then x = ak and so x ∈ T . Suppose that sk 6= 1. Let y =
k−1∑
i=0

si

1−sk
ai. Note

that each si

1−sk
≥ 0 and that

k−1∑
i=0

si

1−sk
= 1

1−sk

k−1∑
i=0

si = 1
1−sk

(1 − sk) = 1 and so we have y ∈ Sk−1 ⊂ T .

Also, we have (1− sk)y =
k−1∑
i=0

siai = x− skak and so x = (1− sk)y + skak = y + sk(ak − y) ∈ [y, ak]. Since

y ∈ Sk−1 ⊂ T and ak ∈ T and T is convex, we have x ∈ T . Thus Sk ⊂ T . By induction, we have Sk ⊂ T for
all k = 0, 1, · · · , l, and in particular S = Sl ⊂ T .



5: Let S =
[
a0, a1, · · · , al

]
be an l-simplex in Rn. for each 0 ≤ j < k ≤ n, the altitudinal hyperplane Hj,k is

the (l − 1)-dimensional affine space in 〈a0, a1, · · · , al〉 which is perpendicular to the edge [aj , ak] and which
passes through the centroid of the (l−2)-simplex

[
a0, a1, · · · , ǎj , · · · , ǎk, · · · , al

]
, (where the check mark above

the points aj and ak indicates that these points are excluded). Show that the altitudinal hyperplanes have
a unique point of intersection. This point is denoted by h and is called the orthocenter of the l-simplex S.

Solution: Let uk = ak − a0 for k = 1, 2, · · · , l, and let A =
(
u1, u2, · · · , ul

)
. To have x ∈ 〈a0, a1, · · · , al〉 we

need x = a0 + Ay for some y ∈ Rl. Let gj,k denote the centroid of the simplex [a0, · · · ǎj , · · · , ǎk, · · · , an].
Note that

g0,k = 1
l−1

∑
i 6=0,k ai = 1

l−1

(
l∑

i=1

ai − ak

)
= a0 + 1

l−1

(
l∑

i=1

ui − uk

)
= a0 + 1

l−1

(
Ac− uk

)
where c is the vector c = (1, 1, · · · , 1)t, and so for each k = 1, 2, · · · , l we have

x ∈ H0,k ⇐⇒ (x− g0,k). (ak − a0) = 0

⇐⇒
((

a0 + Ay
)
−

(
a0 + 1

l−1 (Ac− uk)
)).uk = 0

⇐⇒ Ay .uk = 1
l−1 (Ac− uk).uk

and hence

x ∈
l⋂

k=1

H0,k ⇐⇒ AtAy = 1
l−1

(
AtAc− v

)
where v is the vector v =

(
|u1|2, |u2|2, · · · , |ul|2

)t. Since the simplex S is non-degenerate, {u1, u2, · · · , ul} is
linearly independent, so rank(AtA) = rank(A) = l and hence AtA is invertible. Thus

x ∈
l⋂

k=1

H0,k ⇐⇒ y = 1
l−1

(
c− (AtA)−1v

)
.

This shows that the altitudinal hyperplanes H0,k for k = 1, 2, · · · , l have a unique point of intersection,
namely the point x = a0 + Ay where y = 1

l−1

(
c− (AtA)−1v

)
.

It remains to show that the above point x lies on all the altitudinal hyperplanes Hj,k for 1 ≤ j < k ≤ l.
Let 1 ≤ j < k ≤ l. Note that

gj,k = 1
l−1

∑
i 6=j,k

ai = 1
l−1

( ∑
i 6=0,k

ai − (aj − a0)
)

= g0,k − 1
l−1uj .

Similarly gj,k = g0,j − 1
l−1uk. Since x ∈ H0,k we have (x − g0,k).uk = 0, and since x ∈ H0,j we have

(x− g0,j).uj = 0, and so

(x− gj,k). (ak − aj) = (x− gj,k). (uk − uj)
= (x− gj,k).uk − (x− gj,k).uj

=
(
x− g0,k + 1

l−1uj

).uk −
(
x− g0,j + 1

l−1uk

).uj

= (x− g0,k).uk + 1
l−1uj .uk − (x− g0,j).uj − 1

l−1uk .uj

= 0
hence x ∈ Hj,k, as required.

(b) Let S =
[
a0, a1, · · · , al

]
be an l-simplex in Rn. Let o, g and h be the circumcenter, the centroid, and the

orthocenter of S. Show that g lies l−1
l+1 of the way along the line segment from o to h.

Solution: We know from class that o = a0 + At where t = 1
2 (AtA)−1v with v =

(
|u1|2, · · · , |ul|2

)t, and we
know from part (a) that h = a0 + Ay where y = 1

l−1 (c− (AtA)−1v) with c = (1, 1, · · · , 1)t, and so the point
which lies l−1

l+1 of the way from o to h is the point

o + l−1
l+1 (h− o) = a0 + At + l−1

l+1 (Ay −At) = a0 + 2
l+1At− l−1

l+1Ay

= a0 + 1
l+1A(AtA)−1v + l

l+1

(
A

(
c− (AtA)−1v

)
= a0 + 1

l+1Ac = a0 + 1
l+1

l∑
i=1

ui = a0 + 1
l+1

l∑
i=1

(ai − a0)

= 1
l+1

l∑
i=0

ai ,

which is the centroid of S, as required.


