MATH 245 Linear Algebra 2, Solutions to Assignment 1

: (a) Let A be a set. For each o € A, let p, € R™, let U, be a vector space in R", and let P = ﬂ (pa + Ua).
acA
Show that if P is not empty then it is an affine space in R".

Solution: Let U = [ U,. We claim that U is a vector space in R™. Since each U, is a vector space in R",
acA
we have 0 € U, for all & € A, and hence 0 € U. Let u,v € U and let t € R. Then for all « € A we have

u € Uy and v € U, and so (since U, is a vector space) we have tu € U, and (u + v) € U,. Since tu € U,
and (u +v) € U, for all « € A, we have tu € U and (u+v) € U. Thus U is a vector space as claimed.

Suppose that P is not empty and choose p € P. For each o € A, we have p € p, + U, so we can choose
Uq € U, so that p = pg +ug. We claim that P = p+U. To show that P C p+U, let x € P. For each a € A,
we have = € p, + U, so we can choose v, € U, so that x = p, + vo. Let u = z — p. For each a € A we
have u =2 —p = (Pa + Vo) — (Pa + Ua) = Vo — Uq € Uy, Since u € U, for all o € A, we have u € U. Hence
z=p+u € p+U. Thus P C p+U. Conversely, to show that p4+U C P, let y € p+U. Choose w € U so that
y =p+w. For each a € A we have w € Uy, s0 uy +w € U, and hence y = p+ w = po + g + W € po + Uy.
Since y € p, + U, for all « € A, we have y € P. Thus p+ U C P.
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Q = {z € R®|Ba = ¢}. Show that PN Q is not empty and find its dimension.

Solution: To have z € PN Q, we need x € P = p + ColA so we must have x = p + Ay for some y € R3, and
we need x € () so we must have Bx = g, that is B(p + Ay) = ¢ or equivalently BAy = ¢ — Bp. We solve the

equation BAy = q — Bp for y. We have
(1 2 =2
-1 -2 2

j 4)=0)

=W N =N

1 2 -2|- 1 272 -1
(BA|‘1_BP)(—1 -2 2‘ 1)" 0 0 0 0>

— —2 2

Yy = +s| 1 |+t 0

0 0 1
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3 1 2 0 —1 —2 2 2 0 2
r=p+Ay=|1|+]12 4 1 O|+s| 1 ]+t]O0 =|-1]1+s| 0 |+¢t]5
2 3 5 2 0 0 1 -1 -1 8
2 1 2 1 1 0 3

Thus P N Q contains the point (—1,2,—1,—1,1)¢ and is 2-dimensional.



2: For two affine spaces P and @) in R™, the distance between P and @ is defined to be
dist(P, Q) = min {dist(m,y)‘m € Pyce Q} .

(a) Let p and ¢ be points in R™, let U and V be subspaces of R™, and let P =p+ U and Q = ¢+ V. Show
that

dist(P, Q) = ‘Proj(UJrV)L (p— q)‘ .

Solution: We have
dist(P, Q) = min {dist(x,y)|x €ePyeq}

= min {dist(p+ u, q + v)’u elUve V}
=min{|(g+v) - (p+u)||ueUwveV}
=min{|(g—p) — (u—v)||[ue UveV}
=min {|(¢ —p) —w||lweU+V}
=|(g—p) —Proj, (¢ p)|
= |Pr0j

vy @=P)]

where, on the second last line, we used the fact that ProjU+V(q — p) is the (unique) point on U + V which
is nearest to ¢ — p.

(b> Let b= (L 2, 47 3)t7 Uy = (17 2,0, 1)t7 Uz = (37 9,1, 2)t7 q= (4a 3,1, 2)t7 U1 = (27 3,2, _1)t7 V2 = (17 3,1, _2)t'
Find the distance between the plane x = p + tyu; + tous and the plane x = q + s1v1 + Sovs.

Solution: Let A = (uj,u2) € Myxo and B = (v1,v3) € Myxa, and let U = Col(A4) and V = Col(B), so that
the given two planes are P = p+U and Q = ¢+ V. Note that (U +V)+ = (ColA + ColB)* = Col(A, B)*+ =

Null(C) where C = (A, B)t. We have
1 2 0 1 1 2 0 1 1 0 2 -1 1 0 0 3
C— 3 5 1 2 N 0 1-1 1 N 0 1-1 1 N 01 0-1
12 3 2 -1 0 1-2 3 0 0 1 -2 0 0 1-2
1 3 1 -2 01 1 -1 00 2 —4 0 0 0 O

so that (U + V)* = Null(C) = Span{w} where w = ( —3,1,2, l)t. Writing x = ¢ — p = (3,1,-3,—1)%, we
have

3 3
. B . ~wex =151 [-1
PrOJ(U+V)J_(q 7p) - PrOJw(I) - ‘w|2 w = 15 2 - 72
1 1
and so
dist(P, Q) = |Proj (g—p)| =V15.

(U+V)+



3: For two non-trivial vector spaces U and V in R", we define the angle between U and V', which we write as
angle(U, V), as follows. If U C V or V C U then angle(U, V) = 0, otherwise if U NV = {0} then

angle(U, V) = min{@(u,v)‘o #uecUO0#ve V} )
and if UNV = W # {0} then angle(U,V) = angle(U N W+, V N W). We define the angle between two

affine spaces in R™ to be the angle between their associated vector spaces.

(a) Let 0 # u € R, let U = Span{u}, and let V' be a non-trivial vector space in R™. Show that

PmJ(H)

Solution: Suppose first that u € V. On the one hand, since U C V', we have angle(U, V') = 0, and on the other

hand, we have Projv‘—’;| Iu\ SO cos™ |Projvﬁ| = cos~1(1) = 0. Thus angle(U,V) = 0 = cos ™! |Projvﬁ|.
Next, suppose that v € V1. On the one hand, we have tu+v = 0 for all t € R and all v € V, and

so O(tu,v) = 5 forall 0 # ¢t € R and all 0 # v € V, and on the other hand we have Projvﬁ =0 so

Vﬁ‘ =cos™1(0) = Z. Thus angle(U,V) = Z = cos™ ’Projv‘—zl’.

Finally, suppose that u §§ V and u & V*+. Let v = PI‘O_]V(U) and let 6 = 0(u,v). Note that v # 0 (since

u ¢ V1) and v # u (since u ¢ V). Using trigonometric ratios (for the triangle [0, v, u]) we have

ol _

cost = — ‘PI‘OJ ‘ |Pr0J
Thus we must show that angle(U, V') = 6. Equivalently, we must show that
0 =0(u,v) < f(tu,w) forallO;étERO;éwEV

First we claim that 0 < 6 < Z. Since v # 0 we have cosf = m || > 0. Since v # u so that |[v —u| # 0,

angle(U, V) = cos™

os™1 |Pr0j
u
v lul ’ ’

by Pythagoras’ Theorem we have |u|2 [v]2 + |v —ul? > |v|? so that |u| > |v], and so cos @ = o “ < 1. Since
0 <costl <1 wehave 0 <6 < 7, as claimed.

Let 0 #¢t € R and let 0 # w € V. Suppose first that w € Span{v}, say w = sv with 0 # s € R. Then
we have

T —0(u,v)ifst <0 | 7m—0ifst<0

0(tu, w) = O(tu, sv) { O(u,v) ifst>0 { 6 ifst>0
Since 0 € ( , 2) we have 7 — 0 € ( 7r), so m — 6 > 0, and hence 0(tu,w) > 0 = 0(u,v).

Now suppose that w ¢ Span{v} Let y = Projw(u). Note that if y = 0 then tu+w = u+w = 0 so
we have 0(tu,w) = 5 > 6. Suppose that y # 0. As above (where we showed that 0 < 6 < 7) we have
0 < 6(u,y) < . Since v is the point in V nearest to u, we know that |u—y| > |u—v], so using trigonometric
ratios (for the triangle [0,y,u]) gives

sin (0(u,y)) = vyl > Ju | = sin (6(u,v)) .

|ul |ul
Note that w € Span{y}, say w = sy where 0 # s € R. When st > 0 we
y) > O(u,v), and when st < 0 we have 0(tu, w) = 0(tu, sy) = ™ — 0(u,y) >

Thus 0 < 8(u,v) < O(u,y) <
have H(tu w) = O(tu, sy) =6
T—5 =75 >0(uv).

s
2°
u,

(



(b) Let ug = (1,-2,1,-3)%, ug = (3,2,1,—1)*, v; = (1,-1,0, 1), vo = (1,-3,2, —1)! and v3 = (2, —1,1,—1)".
Find the angle between U = Span{u;,us} and V' = Span{vy, va,v3}.

Solution: Let A = (uy,u2) € Myxo and B = (v1,v2,v3) € Myxs so that U = Col(A) and V' = Col(B). Let
us find a basis for V+ = Null(B?). We have

1-1 0 1 1 -1 0 1 1 0 1 -2 1 0 1 -2 10 0 O
Bt=|1-3 2-1]~|0 2 -2 2]~]l011-3|~|011-3|~[010-1
2 -1 1-1 01 1 -3 0 0 4 -8 0 0 1-2 0 0 1-2

so V= has basis {(0,1,2,1)"}. Thus V = Null(C) where C =(0 1 2 1)¢€ M.
Now let us find a basis for W = U NV = Col(A) N Null(C). To have z € W we need x € Col(A), say
x = At, and we need = € Null(C), that is 0 = Cx = CAt, so t € Null(CA). We have

1 3
-2 2
1 1
3 -1

so we have Null(CA) = Span { ( 1 ) } and W = Span {A <1> } Note that
4
0
2
4

1 3 2
1 -2 2 /1
SON IOk
3

= 2 s

CA=(0 1 2 1) =(-3 3)~(1 -1)

o

1

so we have W = Span{(2,0,1,—2)'} and hence W+ = Null(D) where D = (2 0 1 —2).
Next, consider U N WJ- and VN W=, To have x € U N W+ = Col(A) N Null(D), we need = € Col(A),
say © = At, and we need x € Null(D) so 0 = Dz = DAt. We have

1
DA=(2 0 1 -2)

-2

1

3
f)}andUﬂWl—Span{A

3
L= 9~
-1
()
1 3
)-f ) 6-
3 -1

so UNW+ = Span{u} where u = (1,2,0,1):. Also, VN W+ = Null(C) N Null(D) = Null (10)>’ so we have

so Null(DA) = Span { <_

}. Note that
2

4

ol = 2
2

= O N =

0 2
c\' [1 0
1L _ _
(VNnW=)—- = Col(E), WhereE—<D) =19 1
1 -2
0 2
. 01 2 1 1 0
tm _
SmceEE(2 0 1_2> 9 1) = 61, we have
1 -2
0 2 1 0 2 0
. it |10 (01 2 1N [2] [t oof/3)y .1
Proj oW =EBEE)"Eu=|, 4 |5l{y9 g1 9)|o|Ts|2 1]lo)=2]2]"
1 -2 1 1 -2 1
1 0 2
. . 2 1 3
Pro‘]VmWJ-(u):u_PrO‘](VﬂWJ—)J-(u): 1 ;(Z)é 2) , and
1 1 1
Proj (u) 118
angle(U, V) = cos ™! —‘ VW | = cos ! 7 V18 = cos ™! § =&

|ul V6



l
4: Let ag, a1, -,a; be points in R™. Show that [ao,al, cee al] = { > sia;
i=0

l
OSSiGR,Zsizl}.
=0

!
Solution: Let S = { > sia4
i=0

l
0<s;eR, > s = 1}. Note that each a;r € S. We claim that S is convex.
i=0

l 1
Let z,y € S, say x = ). s;a; and y = ) t;a; where 0 < s;,¢;, and > s, = > t; = 1. Let z € [z,y],

i=0 i=0
say z = « + r(y — x) where 0 < r < 1. Then we have z = ) _ s;a; + T(Ztiai — Zsiai) = > r;a; where
r; =8; +r(t;—s;) for i =0,1,---,1. Since 0 < s; and 0 < ¢; and r; € [s;,¢;] (so r; is between s; and t;), we
must have 7; > 0. Also, we have > r; = s;+7(Xt; — > s;) =1+r(1—1)=1,andso z =) rja; € S.
Thus S is convex, as claimed. Since S is a convex set which contains all the points ag,aq,---,a;, we have
[ao,al,- : ',Cll] CS.
To show that S C [ag, a1, -, a;], we shall show that S is contained in every convex set which contains

ap, a1, --,a;. Let T be a convex set with a; € T for all i = 0,1,---,I. For each k = 0,1,---,1, let

k k
Sy = { S siail0 < s, €R, Y s = 1}. We claim that each Sy C T (and in particular, S = 5, C T'). We
i=0 i=0

k
have So = {ap} C T. Fix k > 1 and suppose, inductively, that S;_1 C T. Let x € Si, say s = Y s;a; with
i=0

k—1
0<s; > 8 =1 If s, =1 then © = a; and so x € T. Suppose that sp # 1. Let y = > 1f;k a;. Note
i=0
_ k=1 | k=l . '
that each 1%t~ > 0 and that l;) o = 5o i;@ 8; = 175;«(1 — i) =1 and so we have y € S, C T.

k—1
Also, we have (1 — si)y = > s;a; = v — sgag and so © = (1 — sg)y + sxap = y + sg(ax — y) € [y, ax]. Since

yE€ Sy 1 CTanda €T and T is convex, we have x € T'. Thus Sy C T. By induction, we have S, C T for
all k=0,1,---,[, and in particular S =S5; C T.



5: Let S = [ao, ay,:-- ,al] be an [-simplex in R". for each 0 < j < k < n, the altitudinal hyperplane H;  is

the (I — 1)-dimensional affine space in (ag, a1, - -, a;) which is perpendicular to the edge [a;, ax] and which
passes through the centroid of the (I—2)-simplex [ag,ay, -+, @;j, -+, ak, -, a;|, (where the check mark above
the points a; and ay indicates that these points are excluded). Show that the altitudinal hyperplanes have
a unique point of intersection. This point is denoted by h and is called the orthocenter of the I-simplex S.

Solution: Let up = ap — ag for k =1,2,---,1, and let A = (ul,uQ,-~-,ul). To have z € {ag, a1, -,a;) we
need z = ag + Ay for some y € R!. Let g; ) denote the centroid of the simplex [ag, -« G, -, Gk, -, Qn)].
Note that

9ok = T2 Doinok Ui = o7 (éaz - ak> =ao+ 35 (éul - uk> = ag + 25 (Ac — uy)
where ¢ is the vector ¢ = (1,1,---,1)%, and so for each k =1,2,---,] we have
r€Hyp < (x—gox)*(ar —apg) =0
< ((ao + Ay) — (a0 + 75 (Ac—up))) »upg =0
= Ay-up = 27 (Ac—ug)

and hence l
T € m Hyp <= At Ay = ﬁ(AtAc — U)
k=1
where v is the vector v = (|u1|?, [ua|?, - -, \ulP)t. Since the simplex S is non-degenerate, {u1,ug,--,u;} is

linearly independent, so rank(A*A) = rank(A) = [ and hence A*A is invertible. Thus

l
RS ﬂHOk = y=15(c—(A'A)"1v).

k=1
This shows that the altitudinal hyperplanes Hyj for £ = 1,2,---,1 have a unique point of intersection,
namely the point # = ag + Ay where y = 15 (c — (A*A)~*

It remains to show that the above pomt x lies on all the altitudinal hyperplanes H;; for 1 <j <k <.
Let 1 < j < k <. Note that

Gik = L 4= l_%( > ai— (a4 *ao)> = go — 7Y
i#),k i#0,k
Similarly g = go,; — ;=gur- Since x € Hyr we have (z — go,x) » ur = 0, and since x € Hp; we have
(x —go,j) * u; =0, and SO
(= gjk) « (ar —aj) = (x = gjr) * (uk — uy)

= (* = gjk) *uk — (T —gjx) * uy

= (¢ = go + yu5) * uk — (¢ = goj + yur) v

= (

T = gok) * Uk + Uy e ug — (T = gog) * Uj — Eyuk s u

=0
hence x € H, 1, as required.
(b) Let S = [ao, ay,-- al] be an [- simplex in R™. Let o, g and h be the circumcenter, the centroid, and the
orthocenter of S. Show that g lies l;—l of the way along the line segment from o to h.
Solution: We know from class that o = ag + At Where t= %(AtA) v with v = (Jug?, -+, |ul|2)t, and we
know from part (a) that h = ag + Ay where y = 27 (c — (A'A)~1v) with ¢ = (1,1,---,1)!, and so the point
which lies ljr—l of the way from o to h is the pomt

0+ 1t (h—0) = ap + At + =5 (Ay — At) = ap + At — 1 Ay
:ao—f—mA(AtA)i U+m(A(C_ AtA )

l l
:CL0+Z+L1AC:CL0+I+%ZIUZ':CL0+H%421(0,2'70,0)
i= i=

l

_ 1

41 Zaia
=0

which is the centroid of S, as required.



