MATH 245 Linear Algebra 2, Solutions to Assignment 2

1: Let $p_1(x) = x - 1$, $p_2(x) = \frac{1}{2}(x^2 - 3x)$ and $p_3(x) = \frac{1}{2}(x^3 - 3x^2 + 2)$. Find the polynomial $f \in \text{Span}\{p_1, p_2, p_3\}$ which minimizes the sum $\sum_{i=1}^{5} (f(a_i) - b_i)^2$ for the 5 points (a_i, b_i) given below

Solution: We want to minimize the distance between $(f(a_1), f(a_2), \dots, f(a_5))^t$ and $b = (b_1, b_2, \dots, b_5)^t$. We have $\int f(a_1) \sqrt{c_1 p_1(a_1) + c_2 p_2(a_1) + c_3 p_3(a_1)} \sqrt{c_1 p_1(a_2) + c_2 p_2(a_2) + c_3 p_3(a_2)}$

$$\begin{pmatrix} f(a_1) \\ f(a_2) \\ f(a_3) \\ f(a_4) \\ f(a_5) \end{pmatrix} = \begin{pmatrix} c_1 p_1(a_1) + c_2 p_2(a_1) + c_3 p_3(a_1) \\ c_1 p_1(a_2) + c_2 p_2(a_2) + c_3 p_3(a_2) \\ c_1 p_1(a_3) + c_2 p_2(a_3) + c_3 p_3(a_3) \\ c_1 p_1(a_4) + c_2 p_2(a_4) + c_3 p_3(a_4) \\ c_1 p_1(a_5) + c_2 p_2(a_5) + c_3 p_3(a_5) \end{pmatrix} = Ac$$

where

$$A = \begin{pmatrix} p_1(a_1) & p_2(a_1) & p_3(a_1) \\ p_1(a_2) & p_2(a_2) & p_3(a_2) \\ p_1(a_3) & p_2(a_3) & p_3(a_3) \\ p_1(a_4) & p_2(a_4) & p_3(a_4) \\ p_1(a_5) & p_2(a_5) & p_3(a_5) \end{pmatrix} = \begin{pmatrix} -2 & 2 & -1 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & -1 & -1 \\ 2 & 0 & 1 \end{pmatrix}$$

and $c = (c_1, c_2, c_3)^t$. To minimize the distance between Ac and b we must choose c so that $Ac = \operatorname{Proj}_{ColA}(b)$. Writing $u = Ac = \operatorname{Proj}_{ColA}(b)$ and $v = b - Ac = \operatorname{Proj}_{(ColA)^{\perp}}(b)$ we have u + v = b, that is Ac + v = b, and so $A^tAc = A^tb$. We solve the equation $A^tAc = A^tb$ for c. We have

$$A^{t}A = \begin{pmatrix} -2 & -1 & 0 & 1 & 2\\ 2 & 0 & -1 & -1 & 0\\ -1 & 1 & 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} -2 & 2 & -1\\ -1 & 0 & 1\\ 0 & -1 & 0\\ 1 & -1 & -1\\ 2 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 10 & -5 & 2\\ -5 & 6 & -1\\ 2 & -1 & 4 \end{pmatrix}$$
$$A^{t}b = \begin{pmatrix} -2 & -1 & 0 & 1 & 2\\ 2 & 0 & -1 & -1 & 0\\ -1 & 1 & 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} -2\\ 1\\ 2\\ 0\\ 1 \end{pmatrix} = \begin{pmatrix} 5\\ -6\\ 4 \end{pmatrix}$$
$$(A^{t}A|A^{t}b) = \begin{pmatrix} 10 & -5 & 2 & | & 5\\ -5 & 6 & -1 & | & -6\\ 2 & 1 & 4 & | & 4 \end{pmatrix} \sim \begin{pmatrix} 0 & 7 & 0 & | & -7\\ 1 & 3 & 11 & | & 6\\ 2 & -1 & 4 & | & 4 \end{pmatrix} \sim \begin{pmatrix} 1 & 3 & 11 & | & 6\\ 0 & 1 & 0 & | & -1\\ 2 & -1 & 4 & | & 4 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 11 & | & 9\\ 0 & 1 & 0 & | & -1\\ 0 & 0 & 18 & | & 15 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 11 & | & 9\\ 0 & 1 & 0 & | & -1\\ 0 & 0 & 1 & | & \frac{5}{6} \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & | & -\frac{1}{6}\\ 0 & 1 & 0 & | & -\frac{1}{6}\\ 0 & 0 & 1 & | & \frac{5}{6} \end{pmatrix}$$

Thus $c = \left(-\frac{1}{6}, -1, \frac{5}{6}\right)^t$ and so

$$f(x) = -\frac{1}{6}(x-1) - \frac{1}{2}(x^2 - 3x) + \frac{5}{12}(x^3 - 3x^2 + 2) = \frac{5}{12}x^3 - \frac{7}{4}x^2 + \frac{4}{3}x + 1.$$

2: (a) Find the perimeter of the regular hexagon on \mathbf{S}^2 with interior angles equal to $\frac{5\pi}{6}$.

Solution: Let u be the center of the hexagon, and let v and w be vertices of the hexagon, with w next to v, counterclockwise. Note that the hexagon can be divided into 6 triangles meeting at u, each of which is congruent to the triangle [u, v, w]. For this triangle, we have $\alpha = \frac{\pi}{3}$, $\beta = \gamma = \frac{5\pi}{12}$, and a = dist(u, v). The perimeter L of the hexagon is given by L = 6a. Using the Second Law of Cosines we have

$$\cos a = \frac{\cos \alpha + \cos \beta \cos \gamma}{\sin \beta \sin \gamma} = \frac{\cos \frac{\pi}{3} + \cos^2 \frac{5\pi}{12}}{\sin^2 \frac{5\pi}{12}}.$$

Note that $\cos^2 \frac{5\pi}{12} = \frac{1 + \cos \frac{5\pi}{6}}{2} = \frac{1 - \frac{\sqrt{3}}{2}}{2} = \frac{2 - \sqrt{3}}{4}$ and $\sin^2 \frac{5\pi}{3} = \frac{1 - \cos \frac{5\pi}{2}}{2} = \frac{1 + \frac{\sqrt{3}}{2}}{2} = \frac{2 + \sqrt{3}}{4}$, so
 $\cos a = \frac{\frac{1}{2} + \frac{2 - \sqrt{3}}{4}}{\frac{2 + \sqrt{3}}{4}} = \frac{4 - \sqrt{3}}{2 + \sqrt{3}} = (4 - \sqrt{3})(2 - \sqrt{3}) = 11 - 6\sqrt{3},$

and so the perimeter is $L = 6a = 6 \cos^{-1} (11 - 6\sqrt{3}).$

(b) Find the area of the regular hexagon on \mathbf{S}^2 with sides of length $\frac{\pi}{6}$.

Solution: Again, we let u be the center of the hexagon, and let v and w be vertices of the hexagon, with w next to v, counterclockwise. In the triangle [u, v, w] we have $\alpha = \frac{\pi}{3}$, $a = \frac{\pi}{6}$ and $\beta = \gamma$. Writing $\theta = \beta = \gamma$, the Second Law of Cosines gives

$$\cos \frac{\pi}{6} = \frac{\cos \frac{\pi}{3} + \cos^2 \theta}{\sin^2 \theta}$$
$$\frac{\sqrt{3}}{2} \sin^2 \theta = \frac{1}{2} + \cos^2 \theta$$
$$\sqrt{3}(1 - \cos^2 \theta) = 1 + 2\cos^2 \theta$$
$$(2 - \sqrt{3})\cos^2 \theta = \sqrt{3} - 1$$
$$\cos^2 \theta = \frac{\sqrt{3} - 1}{2 + \sqrt{3}} = (\sqrt{3} - 1)(2 - \sqrt{3}) = 3\sqrt{3} - 5$$

Thus $\theta = \cos^{-1} \left(\sqrt{3\sqrt{3} - 5} \right)$ and the area of the hexagon is

$$A = 6(\alpha + \beta + \gamma - \pi) = 6(\frac{\pi}{3} + 2\theta - \pi) = 12\theta - 4\pi = 12(\cos^{-1}\sqrt{3\sqrt{3} - 5}) - 4\pi.$$

3: (a) Let $u = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ -1\\ 0 \end{pmatrix}$, $v = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ 1\\ 0 \end{pmatrix}$ and $w = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ 1\\ 1 \end{pmatrix}$. Find the area of the triangle T on \mathbf{S}^2 given by $T = \left\{ x \in \mathbf{S}^2 \mid \operatorname{dist}(x, u) \le \frac{\pi}{2}, \operatorname{dist}(x, v) \le \frac{\pi}{2} \text{ and } \operatorname{dist}(x, w) \le \frac{\pi}{2} \right\}.$

Solution: Notice that T is the polar triangle of [u, v, w], that is T = [u', v', w']. In triangle [u, v, w] we have $a = \cos^{-1}(v \cdot w) = \cos^{-1}\frac{1}{2} = \frac{\pi}{3}$, $b = \cos^{-1}(w \cdot u) = \cos^{-1}\left(-\frac{1}{2}\right) = \frac{2\pi}{3}$ and $c = \cos^{-1}(u \cdot v) = \cos^{-1}(0) = \frac{\pi}{2}$ and so in the polar triangle T = [u', v', w'] we have $\alpha' = \pi - a = \frac{2\pi}{3}$, $\beta' = \pi - b = \frac{\pi}{3}$ and $\gamma' = \pi - c = \frac{\pi}{2}$. Thus the area of T is

$$A = \alpha' + \beta' + \gamma' - \pi = \frac{2\pi}{3} + \frac{\pi}{3} + \frac{\pi}{2} - \pi = \frac{\pi}{2}.$$

(b) Let $u = \frac{1}{\sqrt{6}} \begin{pmatrix} 2\\1\\-1 \end{pmatrix}$, $v = \frac{1}{\sqrt{6}} \begin{pmatrix} 1\\2\\1 \end{pmatrix}$ and $w = \frac{1}{\sqrt{6}} \begin{pmatrix} 1\\-1\\2 \end{pmatrix}$. Find the circumcenter of triangle [u, v, w] on \mathbf{S}^2 .

Solution: Note that

$$st(x, u) = dist(x, v) = dist(x, w)$$

$$\iff \cos^{-1} x \cdot u = \cos^{-1} x \cdot v = \cos^{-1} x \cdot w$$

$$\iff x \cdot u = x \cdot v = x \cdot w$$

$$\iff x \cdot u = x \cdot v \text{ and } x \cdot u = x \cdot w$$

$$\iff x \cdot (u - v) = 0 \text{ and } x \cdot (u - w) = 0$$

$$\iff x \cdot (1, -1, -2)^{t} = 0 \text{ and } x \cdot (1, 2, -3)^{t} = 0$$

$$\iff x_{1} - x_{2} - 2x_{3} = 0 \text{ and } x_{1} + 2x_{2} - 3x_{3} = 0.,$$

We solve these two equations. We have

 di

$$\begin{pmatrix} 1 & -1 & -2 \\ 1 & 2 & -3 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & -2 \\ 0 & 3 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -\frac{7}{3} \\ 0 & 1 & -\frac{1}{3} \end{pmatrix}$$

so the solution is $x = s(7, 1, 3)^t$ for $s \in \mathbf{R}$. To get $|x|^2 = 1$, we need $s^2(7^2 + 1^2 + 3^2) = 1$ and so we must use $s = \pm \frac{1}{\sqrt{59}}$. We choose the positive square root and obtain

$$x = \frac{1}{\sqrt{59}} \begin{pmatrix} 7\\1\\3 \end{pmatrix} \,.$$

4: (a) Let R be the radius of the Earth, in meters $(R \cong 6, 370, 000)$. We describe the position of a point on the Earth in terms of its longitude θ (with $\theta = 0$ at Greenwitch, England and $\theta = \frac{\pi}{2}$ somewhere in Bangladesh) and its latitude ϕ (with $\phi = 0$ at the equator and $\phi = \frac{\pi}{2}$ at the north pole). Find the distance (expressed as a multiple of R) and the bearing (expressed as an angle north of east) from the point at $(\theta, \phi) = (\frac{\pi}{3}, \frac{\pi}{6})$ to the point at $(\theta, \phi) = (\frac{\pi}{2}, \frac{\pi}{4})$.

Solution: Consider the spherical triangle with vertices at u, v and w where u is given by $(\theta, \phi) = \left(\frac{\pi}{3}, \frac{\pi}{6}\right)$, v is given by $(\theta, \phi) = \left(\frac{\pi}{2}, \frac{\pi}{4}\right)$, and w is the north pole, which is given by $\phi = \frac{\pi}{2}$. For this triangle we have $a = R \cdot \frac{\pi}{4}, b = R \cdot \frac{\pi}{3}$, and $\gamma = \frac{\pi}{6}$. The First Law of Cosines, modified for a sphere of radius R, gives

$$\cos \gamma = \frac{\cos(c/R) - \cos(b/R)\cos(a/R)}{\sin(b/R)\sin(a/R)}$$

$$(c/R) = \cos \gamma \sin(b/R)\sin(a/R) + \cos(b/R)\cos(a/R)$$

 \mathbf{so}

$$\cos(c/R) = \cos\gamma\sin(b/R)\sin(a/R) + \cos(b/R)\cos(a/R) = \cos\frac{\pi}{6}\sin\frac{\pi}{4}\sin\frac{\pi}{3} + \cos\frac{\pi}{4}\cos\frac{\pi}{3} = \frac{\sqrt{3}}{2}\cdot\frac{\sqrt{2}}{2}\cdot\frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2}\cdot\frac{1}{2} = \frac{5\sqrt{2}}{8}.$$

Thus the required distance is $c = R \cos^{-1} \left(\frac{5\sqrt{2}}{8}\right)$. The Law of Sines, modified for a sphere of radius R, gives

$$\frac{\sin \alpha}{\sin(a/R)} = \frac{\sin \gamma}{\sin(c/R)}$$

so we have

$$\sin \alpha = \frac{\sin(a/R)\sin\gamma}{\sin(c/R)} \cong \frac{\sin\frac{\pi}{6}\sin\frac{\pi}{4}}{\sqrt{1 - \left(\frac{5\sqrt{2}}{8}\right)^2}} = \frac{\frac{1}{2} \cdot \frac{\sqrt{2}}{2}}{\frac{\sqrt{14}}{8}} = \frac{2}{\sqrt{7}}$$

Thus the bearing is θ east of north, where

$$\theta = \frac{\pi}{2} - \alpha = \frac{\pi}{2} - \sin^{-1}\left(\frac{2}{\sqrt{7}}\right) = \cos^{-1}\left(\frac{2}{\sqrt{7}}\right).$$

(b) Find the radius R of a sphere on which there is a regular (equilateral) triangle with sides of length 1 and angles equal to $\frac{2\pi}{5}$.

Solution: We begin by finding $\cos \frac{2\pi}{5}$. We note that the polynomial $f(x) = x^5 - 1$ factors over **C** as

$$x^{5} - 1 = (x - 1) \left(x - e^{i 2\pi/5} \right) \left(x - e^{-i 2\pi/5} \right) \left(x - e^{i 4\pi/5} \right) \left(x - e^{-i 4\pi/5} \right)$$

and hence over ${\bf R}$ as

$$x^{5} - 1 = (x - 1) \left(x^{2} - 2 \operatorname{Re}(e^{i \, 2\pi/5}) + |e^{i \, 2\pi/5}|^{2} \right) \left(x^{2} - 2 \operatorname{Re}(e^{i \, 4\pi/5}) + |e^{i \, 4\pi/5}|^{2} \right)$$

= $(x - 1) \left(x^{2} - 2 \cos(\frac{2\pi}{5}) + 1 \right) \left(x^{2} - 2 \cos(\frac{4\pi}{5}) + 1 \right) .$

Writing $a = 2\cos\frac{2\pi}{5}$ and $b = 2\cos\frac{4\pi}{5}$, we need

$$(x^{2} - ax + 1)(x^{2} - bx + 1) = \frac{x^{5} - 1}{x - 1} = x^{4} + x^{3} + x^{2} + x + 1.$$

Equating the coefficient of x^3 gives -a - b = 1 (1), and equating the coefficient of x^2 gives 2 + ab = 1 (2). From equation (1) we have b = -(1 + a), and putting this into equation (2) gives a(1 + a) = 1, that is $a^2 + a - 1 = 0$, and so we have $a = \frac{-1 \pm \sqrt{5}}{2}$. Since $a = 2 \cos \frac{2\pi}{5} > 0$ we must have $a = \frac{-1 \pm \sqrt{5}}{2}$ and hence

$$\cos \frac{2\pi}{5} = \frac{-1+\sqrt{5}}{4}$$

The Second Law of Cosines, modified for a sphere of radius R, is

$$\cos \frac{a}{R} = \frac{\cos \alpha + \cos \beta \cos \gamma}{\sin \beta \sin \gamma}$$

Applying this to the triangle with $\alpha = \beta = \gamma = \frac{2\pi}{5}$ and a = b = c = 1, gives

$$\cos \frac{1}{R} = \frac{\cos \frac{2\pi}{5} + \cos^2 \frac{2\pi}{5}}{\sin^2 \frac{2\pi}{5}} = \frac{\cos \frac{2\pi}{5} + \cos^2 \frac{2\pi}{5}}{1 - \cos^2 \frac{2\pi}{5}} = \frac{\frac{-1 + \sqrt{5}}{4} + \frac{6 - 2\sqrt{5}}{16}}{1 - \frac{6 - 2\sqrt{5}}{16}}$$
$$= \frac{-2 + 2\sqrt{5} + 3 - \sqrt{5}}{8 - 3 + \sqrt{5}} = \frac{1 + \sqrt{5}}{5 + \sqrt{5}} = \frac{1 + \sqrt{5}}{5 + \sqrt{5}} \cdot \frac{5 - \sqrt{5}}{5 - \sqrt{5}} = \frac{4\sqrt{5}}{20} = \frac{1}{\sqrt{5}}$$

Thus $R = \frac{1}{\cos^{-1}\left(\frac{1}{\sqrt{5}}\right)}.$

5: Let $u_1, u_2, \dots, u_{n-2} \in \mathbf{R}^n$ and let $A = (u_1, u_2, \dots, u_{n-2}) \in M_{n \times (n-2)}(\mathbf{R})$. For i < j, let $A^{i,j}$ denote the $(n-2) \times (n-2)$ matrix obtained from A by removing the i^{th} and j^{th} rows. Note that $\{u_1, \dots, u_{n-2}\}$ is linearly independent if and only if $A^{i,j}$ is invertible for some i < j. Find a formula for an $n \times n$ matrix B with the property that if $\{u_1, \dots, u_{n-2}\}$ is linearly dependent then B = 0 and if $\{u_1, \dots, u_{n-2}\}$ is linearly independent then for all i < j, if $A^{i,j}$ is invertible the the i^{th} and j^{th} columns of B form a basis for $(\text{Col}A)^{\perp}$. Solution: Let

$$B_{k,l} = \begin{cases} (-1)^{k+l} |A^{k,l}| & \text{, if } k < l \\ 0 & \text{, if } k = l \\ (-1)^{k+l+1} |A^{k,l}| & \text{, if } k > l \,. \end{cases}$$

If $\{u_1, u_2, \dots, u_l\}$ is linearly dependent then each $|A^{k,l}| = 0$ and so B = 0. Suppose that $\{u_1, \dots, u_l\}$ is linearly independent. Note that ColA is (n-2)-dimensional and $(ColA)^{\perp}$ is 2-dimensional. We claim that each column of B lies in $(ColA)^{\perp} = \text{Null}(A^t)$, or equivalently that $ColB \subseteq \text{Null}(A^t)$. Writing A^l for the $(n-1) \times (n-2)$ matrix obtained from A by removing the l^{th} row and u_k^l for the vector in \mathbf{R}^{n-1} obtained from u_k by removing the l^{th} row, the (k, l) entry of the matrix A^tB is given by

$$[A^{t}B]_{k,l} = (k^{\text{th row of } A^{t}}) \cdot (l^{\text{th column of } B}) = u_{k} \cdot \begin{pmatrix} (-1)^{k+l} |A^{1,l}| \\ \vdots \\ -|A^{l-1,l}| \\ 0 \\ |A^{l+1,l}| \\ \vdots \\ (-1)^{n+l} |A^{n,l}| \end{pmatrix} = \left| (A^{l}, u_{k}^{l}) \right| = 0$$

Thus $\operatorname{Col}B \subseteq (\operatorname{Col}A)^{\perp}$, as claimed. Next we note that for i < j with $A^{i,j}$ invertible so that $|A^{i,j}| \neq 0$, we have

$$\begin{pmatrix} B_{i,i} & B_{i,j} \\ B_{j,i} & B_{j,j} \end{pmatrix} = \begin{pmatrix} 0 & (-1)^{i+j} |A^{i,j}| \\ (-1)^{i+j+1} |A^{i,j}| & 0 \end{pmatrix}$$

which is clearly invertible, and so the i^{th} and j^{th} columns of B are linearly independent. Since these two columns span a 2-dimensional subspace of ColB which is a subspace of the 2-dimensional space $(\text{Col}A)^{\perp}$, the two columns form a basis for $(\text{Col}A)^{\perp}$.