
MATH 245 Linear Algebra 2, Solutions to Assignment 2

1: Let p1(x) = x−1, p2(x) = 1
2 (x2−3x) and p3(x) = 1

2 (x3−3x2 +2). Find the polynomial f ∈ Span{p1, p2, p3}

which minimizes the sum
5∑
i=1

(
f(ai)− bi

)2 for the 5 points (ai, bi) given below

i 1 2 3 4 5
ai −1 0 1 2 3
bi −2 1 2 0 1

Solution: We want to minimize the distance between
(
f(a1), f(a2), · · · , f(a5)

)t and b = (b1, b2, · · · , b5)t. We
have 

f(a1)
f(a2)
f(a3)
f(a4)
f(a5)

 =


c1 p1(a1) + c2 p2(a1) + c3 p3(a1)
c1 p1(a2) + c2 p2(a2) + c3 p3(a2)
c1 p1(a3) + c2 p2(a3) + c3 p3(a3)
c1 p1(a4) + c2 p2(a4) + c3 p3(a4)
c1 p1(a5) + c2 p2(a5) + c3 p3(a5)

 = Ac

where

A =


p1(a1) p2(a1) p3(a1)
p1(a2) p2(a2) p3(a2)
p1(a3) p2(a3) p3(a3)
p1(a4) p2(a4) p3(a4)
p1(a5) p2(a5) p3(a5)

 =


−2 2 −1
−1 0 1

0 −1 0
1 −1 −1
2 0 1


and c = (c1, c2, c3)t. To minimize the distance between Ac and b we must choose c so that Ac = Proj

ColA
(b).

Writing u = Ac = Proj
ColA

(b) and v = b− Ac = Proj
(ColA)⊥

(b) we have u+ v = b, that is Ac+ v = b, and

so AtAc = Atb. We solve the equation AtAc = Atb for c. We have

AtA =

−2 −1 0 1 2
2 0 −1 −1 0
−1 1 0 −1 1



−2 2 −1
−1 0 1

0 −1 0
1 −1 −1
2 0 1

 =

 10 −5 2
−5 6 −1

2 −1 4



Atb =

−2 −1 0 1 2
2 0 −1 −1 0
−1 1 0 −1 1



−2

1
2
0
1

 =

 5
−6

4


(
AtA

∣∣Atb) =

 10 −5 2
−5 6 −1

2 1 4

∣∣∣∣∣∣
5
−6

4

 ∼
 0 7 0

1 3 11
2 −1 4

∣∣∣∣∣∣
−7

6
4

 ∼
 1 3 11

0 1 0
0 7 18

∣∣∣∣∣∣
6
−1

8


∼

 1 0 11
0 1 0
0 0 18

∣∣∣∣∣∣
9
−1
15

 ∼
 1 0 11

0 1 0
0 0 1

∣∣∣∣∣∣
9
−1

5
6

 ∼
 1 0 0

0 1 0
0 0 1

∣∣∣∣∣∣
− 1

6
−1

5
6


Thus c =

(
− 1

6 ,−1, 5
6

)t and so

f(x) = − 1
6 (x− 1)− 1

2 (x2 − 3x) + 5
12 (x3 − 3x2 + 2) = 5

12x
3 − 7

4x
2 + 4

3x+ 1 .



2: (a) Find the perimeter of the regular hexagon on S2 with interior angles equal to 5π
6 .

Solution: Let u be the center of the hexagon, and let v and w be vertices of the hexagon, with w next to
v, counterclockwise. Note that the hexagon can be divided into 6 triangles meeting at u, each of which is
congruent to the triangle [u, v, w]. For this triangle, we have α = π

3 , β = γ = 5π
12 , and a = dist(u, v). The

perimeter L of the hexagon is given by L = 6a. Using the Second Law of Cosines we have

cos a =
cosα+ cosβ cos γ

sinβ sin γ
=

cos π3 + cos2 5π
12

sin2 5π
12

.

Note that cos2 5π
12 = 1+cos 5π

6
2 = 1−

√
3

2
2 = 2−

√
3

4 and sin2 5π
3 = 1−cos 5π

6
2 = 1+

√
3

2
2 = 2+

√
3

4 , so

cos a =
1
2 + 2−

√
3

4

2+
√

3
4

= 4−
√

3
2+
√

3
= (4−

√
3)(2−

√
3) = 11− 6

√
3 ,

and so the perimeter is L = 6a = 6 cos−1
(
11− 6

√
3
)
.

(b) Find the area of the regular hexagon on S2 with sides of length π
6 .

Solution: Again, we let u be the center of the hexagon, and let v and w be vertices of the hexagon, with w
next to v, counterclockwise. In the triangle [u, v, w] we have α = π

3 , a = π
6 and β = γ. Writing θ = β = γ,

the Second Law of Cosines gives

cos π6 =
cos π3 + cos2 θ

sin2 θ√
3

2 sin2 θ = 1
2 + cos2 θ

√
3(1− cos2 θ) = 1 + 2 cos2 θ

(2−
√

3) cos2 θ =
√

3− 1

cos2 θ =
√

3−1
2+
√

3
= (
√

3− 1)(2−
√

3) = 3
√

3− 5 .

Thus θ = cos−1
(√

3
√

3− 5
)

and the area of the hexagon is

A = 6
(
α+ β + γ − π

)
= 6

(
π
3 + 2 θ − π

)
= 12 θ − 4π = 12

(
cos−1

√
3
√

3− 5
)
− 4π .



3: (a) Let u = 1√
2

 1
−1

0

, v = 1√
2

 1
1
0

 and w = 1√
2

 0
1
1

. Find the area of the triangle T on S2 given by

T =
{
x ∈ S2

∣∣dist(x, u) ≤ π
2 , dist(x, v) ≤ π

2 and dist(x,w) ≤ π
2

}
.

Solution: Notice that T is the polar triangle of [u, v, w], that is T =
[
u′, v′, w′

]
. In triangle [u, v, w] we have

a = cos−1(v .w) = cos−1 1
2 = π

3 , b = cos−1(w .u) = cos−1
(
− 1

2

)
= 2π

3 and c = cos−1(u. v) = cos−1(0) = π
2

and so in the polar triangle T = [u′, v′, w′] we have α′ = π − a = 2π
3 , β′ = π − b = π

3 and γ′ = π − c = π
2 .

Thus the area of T is
A = α′ + β′ + γ′ − π = 2π

3 + π
3 + π

2 − π = π
2 .

(b) Let u = 1√
6

 2
1
−1

, v = 1√
6

 1
2
1

 and w = 1√
6

 1
−1

2

. Find the circumcenter of triangle [u, v, w] on S2.

Solution: Note that

dist(x, u) = dist(x, v) = dist(x,w)

⇐⇒ cos−1 x.u = cos−1 x. v = cos−1 x.w
⇐⇒ x.u = x. v = x.w
⇐⇒ x.u = x. v and x.u = x.w
⇐⇒ x. (u− v) = 0 and x. (u− w) = 0
⇐⇒ x. (1,−1,−2)t = 0 and x. (1, 2,−3)t = 0
⇐⇒ x1 − x2 − 2x3 = 0 and x1 + 2x2 − 3x3 = 0 . ,

We solve these two equations. We have(
1 −1 −2
1 2 −3

)
∼
(

1 −1 −2
0 3 −1

)
∼
(

1 0 − 7
3

0 1 − 1
3

)
so the solution is x = s (7, 1, 3)t for s ∈ R. To get |x|2 = 1, we need s2(72 + 12 + 32) = 1 and so we must use
s = ± 1√

59
. We choose the positive square root and obtain

x = 1√
59

 7
1
3

 .



4: (a) Let R be the radius of the Earth, in meters (R ∼= 6, 370, 000). We describe the position of a point on the
Earth in terms of its longitude θ (with θ = 0 at Greenwitch, England and θ = π

2 somewhere in Bangladesh)
and its latitude φ (with φ = 0 at the equator and φ = π

2 at the north pole). Find the distance (expressed as
a multiple of R) and the bearing (expressed as an angle north of east) from the point at (θ, φ) = (π3 ,

π
6 ) to

the point at (θ, φ) = (π2 ,
π
4 ).

Solution: Consider the spherical triangle with vertices at u, v and w where u is given by (θ, φ) =
(
π
3 ,

π
6

)
,

v is given by (θ, φ) =
(
π
2 ,

π
4

)
, and w is the north pole, which is given by φ = π

2 . For this triangle we have
a = R · π4 , b = R · π3 , and γ = π

6 . The First Law of Cosines, modified for a sphere of radius R, gives

cos γ =
cos(c/R)− cos(b/R) cos(a/R)

sin(b/R) sin(a/R)
so

cos(c/R) = cos γ sin(b/R) sin(a/R) + cos(b/R) cos(a/R)

= cos π6 sin π
4 sin π

3 + cos π4 cos π3 =
√

3
2 ·

√
2

2 ·
√

3
2 +

√
2

2 ·
1
2 = 5

√
2

8 .

Thus the required distance is c = R cos−1
(

5
√

2
8

)
. The Law of Sines, modified for a sphere of radius R, gives

sinα
sin(a/R)

=
sin γ

sin(c/R)
so we have

sinα =
sin(a/R) sin γ

sin(c/R)
∼=

sin π
6 sin π

4√
1−

(
5
√

2
8

)2
=

1
2 ·
√

2
2√

14
8

= 2√
7
.

Thus the bearing is θ east of north, where

θ = π
2 − α = π

2 − sin−1
(

2√
7

)
= cos−1

(
2√
7

)
.

(b) Find the radius R of a sphere on which there is a regular (equilateral) triangle with sides of length 1 and
angles equal to 2π

5 .

Solution: We begin by finding cos 2π
5 . We note that the polynomial f(x) = x5 − 1 factors over C as

x5 − 1 = (x− 1)
(
x− ei 2π/5

) (
x− e−i 2π/5

) (
x− ei 4π/5

) (
x− e−i 4π/5

)
and hence over R as

x5 − 1 = (x− 1)
(
x2 − 2 Re(ei 2π/5) + |ei 2π/5|2

) (
x2 − 2 Re(ei 4π/5) + |ei 4π/5|2

)
= (x− 1)

(
x2 − 2 cos( 2π

5 ) + 1
) (
x2 − 2 cos( 4π

5 ) + 1
)
.

Writing a = 2 cos 2π
5 and b = 2 cos 4π

5 , we need

(x2 − ax+ 1)(x2 − bx+ 1) =
x5 − 1
x− 1

= x4 + x3 + x2 + x+ 1 .

Equating the coefficient of x3 gives −a − b = 1 (1), and equating the coefficient of x2 gives 2 + ab = 1 (2).
From equation (1) we have b = −(1 + a), and putting this into equation (2) gives a(1 + a) = 1, that is
a2 + a− 1 = 0, and so we have a = −1±

√
5

2 . Since a = 2 cos 2π
5 > 0 we must have a = −1+

√
5

2 and hence

cos 2π
5 = −1+

√
5

4 .

The Second Law of Cosines, modified for a sphere of radius R, is

cos a
R =

cosα+ cosβ cos γ
sinβ sin γ

.

Applying this to the triangle with α = β = γ = 2π
5 and a = b = c = 1, gives

cos 1
R =

cos 2π
5 + cos2 2π

5

sin2 2π
5

=
cos 2π

5 + cos2 2π
5

1− cos2 2π
5

=
−1+

√
5

4 + 6−2
√

5
16

1− 6−2
√

5
16

= −2+2
√

5+3−
√

5
8−3+

√
5

= 1+
√

5
5+
√

5
= 1+

√
5

5+
√

5
· 5−

√
5

5−
√

5
= 4
√

5
20 = 1√

5

.

Thus R =
1

cos−1
(

1√
5

) .



5: Let u1, u2, · · · , un−2 ∈ Rn and let A =
(
u1, u2, · · · , un−2

)
∈ Mn×(n−2)(R). For i < j, let Ai,j denote the

(n − 2) × (n − 2) matrix obtained from A by removing the ith and jth rows. Note that {u1, · · · , un−2} is
linearly independent if and only if Ai,j is invertible for some i < j. Find a formula for an n × n matrix B
with the property that if {u1, · · · , un−2} is linearly dependent then B = 0 and if {u1, · · · , un−2} is linearly
independent then for all i < j, if Ai,j is invertible the the ith and jth columns of B form a basis for (ColA)⊥.

Solution: Let

Bk,l =


(−1)k+l

∣∣Ak,l∣∣ , if k < l

0 , if k = l

(−1)k+l+1
∣∣Ak,l∣∣ , if k > l .

If {u1, u2, · · · , ul} is linearly dependent then each
∣∣Ak,l∣∣ = 0 and so B = 0. Suppose that {u1, · · · , ul} is

linearly independent. Note that ColA is (n− 2)-dimensional and (ColA)⊥ is 2-dimensional. We claim that
each column of B lies in (ColA)⊥ = Null(At), or equivalently that ColB ⊆ Null(At). Writing Al for the
(n− 1)× (n− 2) matrix obtained from A by removing the lth row and uk

l for the vector in Rn−1 obtained
from uk by removing the lth row, the (k, l) entry of the matrix AtB is given by

[
AtB

]
k,l

= (kth row of At). (lth column of B) = uk .



(−1)k+l
∣∣A1,l

∣∣
...

−
∣∣Al−1,l

∣∣
0∣∣Al+1,l
∣∣

...
(−1)n+l

∣∣An,l∣∣


=
∣∣∣(Al, ukl)∣∣∣ = 0 .

Thus ColB ⊆ (ColA)⊥, as claimed. Next we note that for i < j with Ai,j invertible so that
∣∣Ai,j∣∣ 6= 0, we

have (
Bi,i Bi,j
Bj,i Bj,j

)
=
(

0 (−1)i+j
∣∣Ai,j∣∣

(−1)i+j+1
∣∣Ai,j∣∣ 0

)
which is clearly invertible, and so the ith and jth columns of B are linearly independent. Since these two
columns span a 2-dimensional subspace of ColB which is a subspace of the 2-dimensional space (ColA)⊥,
the two columns form a basis for (ColA)⊥.


