
MATH 245 Linear Algebra 2, Solutions to Assignment 3

1: Let u1 =


1
0
1
−1

, u2 =


2
1
1
0

, u3 =


1
−3

2
1

 and x =


1
1
7
3

. Let U = {u1, u2, u3} and let U = Span U . Find

Proj
U

(x) in the following three ways.

(a) Let A =
(
u1, u2, u3

)
∈M4×3 then use the formula Proj

U
(x) = Ay where y is the solution to AtAy = Atx.

Solution: We have

AtA =

 1 0 1 −1
2 1 1 0
1 −3 2 1




1 2 1
0 1 −3
1 1 2
−1 0 1

 =

 3 3 2
3 6 1
2 1 15



Atx =

 1 0 1 −1
2 1 1 0
1 −3 2 1




1
1
7
3

 =

 5
10
15


(
AtA

∣∣Atx) =

 3 3 2
3 6 1
2 1 15

∣∣∣∣∣∣
5
10
15

 ∼
 1 2 −13

3 6 1
2 1 15

∣∣∣∣∣∣
−10

10
15

 ∼
 1 2 −13

0 0 40
0 3 −41

∣∣∣∣∣∣
−10

40
−35


∼

 1 2 −13
0 3 −41
0 0 1

∣∣∣∣∣∣
−10
−35

1

 ∼
 1 2 0

0 3 0
0 0 1

∣∣∣∣∣∣
3
6
1

 ∼
 1 2 0

0 1 0
0 0 1

∣∣∣∣∣∣
3
2
1

 ∼
 1 0 0

0 1 0
0 0 1

∣∣∣∣∣∣
−1

2
1


and so

y =

−1
2
1

 and Proj
U

(x) = Ay =


1 2 1
0 1 −3
1 1 2
−1 0 1


−1

2
1

 =


4
−1

3
2

 .

(b) Apply the Gram-Schmidt Procedure to the basis U to obtain an orthogonal basis V = {v1, v2, v3} for U ,

then use the formula Proj
U

(x) =
3∑
i=1

x. vi
|vi|2

vi.

Solution: We let

v1 = u1 =


1
0
1
−1



v2 = u2 −
u2 . v1
|v1|2

v1 =


2
1
1
0

− 3
3


1
0
1
−1

 =


1
1
0
1



v3 = u3 −
u3 . v1
|v1|2

v1 −
u3 . v2
|v2|2

v2 =


1
−3

2
1

− 2
3


1
0
1
−1

+
1
3


1
1
0
1

 =
1
3


2
−8

4
6

 =
2
3


1
−4

2
3

 .

Then

Proj
U

(x) =
x. v1
|v1|2

v1 −
x. v2
|v2|2

v2 −
x. v3
|v3|2

v3 =
5
3


1
0
1
−1

+
5
3


1
1
0
1

+
20
30


1
−4

2
3

 =
1
3


12
−3

9
6

 =


1
−1

3
2

 .



(c) Find w = X(u1, u2, u3) so that {w} is a basis for U⊥, then calculate Proj
U

(x) = x− Proj
w

(x).

Solution: We let

w = X(u1, u2, u3) = X




1
0
1
−1

 ,


2
1
1
0

 ,


1
−3

2
1




=

−
∣∣∣∣∣∣

0 1 −3
1 1 2
−1 0 1

∣∣∣∣∣∣ ,
∣∣∣∣∣∣

1 2 1
1 1 2
−1 0 1

∣∣∣∣∣∣ ,−
∣∣∣∣∣∣

1 2 1
0 1 −3
−1 0 1

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
1 2 1
0 1 −3
1 1 2

∣∣∣∣∣∣
t

=


−(−2− 1− 3)
(1− 4− 2 + 1)
−(1 + 6 + 1)
(2− 6 + 3− 1)

 =


6
−4
−8
−2

 = 2


3
−2
−4
−1


and so

Proj
U

(x) = x− x.w
|w|2

w =


1
1
7
3

+
30
30


3
−2
−4
−1

 =


4
−1

3
2

 .

2: Consider the vector space P2 = P2(R) as a subspace of the vector space

C
(
(0, 1)

)
= C

(
(0, 1),R

)
=
{
f : (0, 1)→ R

∣∣∣f is continuous, and
∫ 1

0

f(x)2 dx converges.
}

with the inner product given by 〈f, g〉 =
∫ 1

0

fg.

(a) Let p0 = 1, p1 = x and p2 = x2. Apply the Gram-Schmidt Procedure to the basis {p0, p1, p2} to obtain
an orthogonal basis {q0, q1, q2} for P2.

Solution: We let

q0 = p0 = 1

q1 = p1 −
〈p1, q0〉
|q0|2

q0 = x− 1/2
1 · 1 = x− 1

2 , and

q2 = p2 −
〈p2, q0〉
|q0|2

q0 −
〈p2, q1〉
|q1|2

q1 = x2 − 1/3
1 · 1−

1/12
1/12

(
x− 1

2

)
= x2 − 1

3 −
(
x− 1

2

)
= x2 − x+ 1

6 ,

where we made use of the following equalities

〈p1, q0〉 =
∫ 1

0

x dx = 1
2

|q0|2 =
∫ 1

0

1 dx = 1

〈p2, q0〉 =
∫ 1

0

x2 dx = 1
3

〈p2, q1〉 =
∫ 1

0

x2
(
x− 1

2

)
dx =

∫ 1

0

x3 − 1
2 x

2 dx = 1
4 −

1
6 = 1

12

|q1|2 =
∫ 1

0

(
x− 1

2

)2
dx =

∫ 1

0

x2 − x+ 1
4 dx = 1

3 −
1
2 + 1

4 = 1
12 .

We also note (for use in parts (b) and (c)) that

|q2|2 =
∫ 1

0

(
x2 − x+ 1

6

)2
=
∫ 1

0

x4 − 2x3 + 4
3x

2 − 1
3x+ 1

36 dx = 1
5 −

1
2 + 4

9 −
1
6 + 1

36 = 1
180 .



(b) Find the quadratic f ∈ P2 which minimizes
∫ 1

0

(
f(x)− x−1/3

)2
dx.

Solution: Write g(x) = x−1/3. Note that
∫ 1

0

(
f(x) − x−1/3

)2
dx =

∣∣f − g∣∣2. To minimize |f − g| we must

choose

f = Proj
P2

(g) =
〈g, q0〉
|q0|2

q0 +
〈g, q1〉
|q1|2

q1 +
〈g, q2〉
|q2|2

q2

= 3/2
1 · 1 + −3/20

1/12

(
x− 1

2

)
+ 1/40

1/180

(
x2 − x+ 1

6

)
= 3

2 −
9
5

(
x− 1

2

)
+ 9

2

(
x2 − x+ 1

6

)
= 9

2x
2 − 63

10x+ 63
20 ,

where me made use of some equalities from part (a) along with the following

〈g, q0〉 =
∫ 1

0

x−1/3 dx = 3
2

〈g, q1〉 =
∫ 1

0

(
x− 1

2

)
x−1/3 dx =

∫ 1

0

x2/3 − 1
2x
−1/3 dx = 3

5 −
3
4 = − 3

20

〈g, q2〉 =
∫ 1

0

(
x2 − x+ 1

6

)
x−1/3 dx =

∫ 1

0

x5/3 − x2/3 + 1
6x
−1/3 dx = 3

8 −
3
5 + 1

4 = 1
40 .

(c) Given that f ∈ C
(
(0, 1)

)
with

∫ 1

0

f(x) dx = 3,
∫ 1

0

xf(x) dx = 2 and
∫ 1

0

x2f(x) dx = 1, find the minimum

possible value for
∫ 1

0

f(x)2 dx.

Solution: Since 〈f, 1〉 = 3, 〈f, x〉 = 2 and 〈f, x2〉 = 1 we have

〈f, q0〉 = 〈f, 1〉 = 3

〈f, q1〉 =
〈
f, x− 1

2

〉
= 〈f, x〉 − 1

2 〈f, 1〉 = 2− 3
2 = 1

2 , and

〈f, q2〉 =
〈
f, x2 − x+ 1

6

}
= 〈f, x2〉 − 〈f, x〉+ 1

6 〈f, 1〉 = 1− 2 + 1
2 = − 1

2 ,

and hence

Proj
P2

(f) =
〈f, q0〉
|q0|2

q0 +
〈f, q1〉
|q1|2

q1 +
〈f, q2〉
|q2|2

q2 = 3
1 q0 + 1/2

1/12q1 + −1/2
180 q2 = 3q0 + 6q1 − 90q2 .

Let g = 3q0 +6q1−90q2. Given that f ∈ C(0, 1) with Proj
P2

(f) = g, in order to minimize |f |2 =
∫ 1

0

f(x)2 dx

we must choose f = g since, by Pythagoras’ Theorem, we have |f |2 = |g|2 + |f − g|2 ≥ |g|2 with equality
only when |f − g| = 0. Thus the minimum possible value for |f |2 is

|g|2 =
〈
3q0 + 6q1 − 90q2, 3q0 + 6q1 − 90q2

〉
= 9|q0|2 + 36|q1|2 + 8100|q2|2 = 9 + 36

12 + 8100
180 = 9 + 3 + 45 = 57 .



3: Let U and V be inner product spaces over R. An isometry from U to V is a surjective map F : U → V
which preserves distance, so that for all x, y ∈ U we have

∣∣F (x)− F (y)
∣∣ = |x− y|. An inner product space

isomorphism from U to V is a bijective linear map G : U → V which preserves inner product, so that for
all x, y ∈ U we have

〈
G(x), G(y)

〉
= 〈x, y〉. Show that, in the case that U and V are finite dimensional,

every isometry F : U → V is of the form F (x) = G(x) + b for some inner product space isomorphism G and
some b ∈ V .

Solution: Let F : U → V be an isometry. Note that F is bijective since it is surjective by definition and it
is injective since, for x, y ∈ U we have

F (x) = F (y) =⇒
∣∣F (x)− F (y)

∣∣ = 0 =⇒ |x− y| = 0 =⇒ x = y .

Define G : U → V by
G(x) = F (x)− F (0)

so that we have F (x) = G(x) + b with b = F (0). Note that G is bijective, G(0) = 0 and G preserves distance
since for x, y ∈ U we have∣∣G(x)−G(y)

∣∣ =
∣∣F (x)− F (0)− F (y) + F (0)

∣∣ =
∣∣F (x)− F (y)

∣∣ = |x− y| .
It follows from the Polarization Identity that G preserves inner product, indeed for x, y ∈ U we have〈

G(x), G(y)
〉

= 1
2

(
|G(x)|2 + |G(y)|2 − |G(x)−G(y)|2

)
, by the Polarization Identity

= 1
2

(
|G(x)−G(0)|2 + |G(y)−G(0)|2 − |G(x)−G(y)|2

)
, since G(0) = 0

= 1
2

(
|x− 0|2 + |y − 0|2 − |x− y|2

)
, since G preserves distance

= 1
2

(
|x|2 + |y|2 − |x− y|2

)
= 〈x, y〉 , by the Polarization Identity.

Finally, we provide two proofs that G is linear. For the first proof (which is valid even when U and V are
infinite-dimensional), let x, y ∈ U and t ∈ R. Then we have G(x+ ty) = G(x) + tG(y) since∣∣G(x+ ty)−

(
G(x) + tG(y)

)∣∣2 =
∣∣G(x+ ty)−G(x)− tG(y)

∣∣2
=
〈
G(x+ ty)−G(x)− tG(y) , G(x+ ty)−G(x)− tG(y)

〉
=
〈
G(x+ ty), G(x+ ty)

〉
−
〈
G(x+ ty), G(x)

〉
− t
〈
G(x+ ty), G(y)

〉
−
〈
G(x), G(x+ ty)

〉
+
〈
G(x), G(x)

〉
+ t
〈
G(x), G(y)

〉
− t
〈
G(y), G(x+ ty)

〉
+ t
〈
G(y), G(x)

〉
+ t2

〈
G(y), G(y)

〉
= 〈x+ ty, x+ ty〉 − 〈x+ ty, x〉 − t〈x+ ty, y〉
− 〈x, x+ ty〉+ 〈x, x〉+ t〈x, y〉
− 〈y, x+ ty〉+ t〈y, x〉+ t2〈y, y〉

=
〈
x+ ty − x− ty , x+ ty − x− ty

〉
= 0 .

For the second proof, we begin by noting that G−1 also preserves inner product. Indeed, given u, v ∈ V , by
writing x = G−1(u) and y = G−1(v) and using the fact that G preserves inner product, we have〈

G−1(u), G−1(v)
〉

= 〈x, y〉 =
〈
G(x), G(y)

〉
= 〈u, v〉 .

Next we show that dim(U) = dim(V ). Let U = {u1, · · · , ul} be an orthonormal basis for U , and let
V =

{
G(u1), · · · , G(ul)

}
. Since G preserves inner product, V is an orthonormal set, hence V is linearly

independent, hence dimU = l ≤ dimV . Similarly, since G−1 also preserves inner product, dimV ≤ dimU .
Thus dimU = dimV and V is an orthonormal basis for V . Finally we note that G is linear since for

x =
l∑
i=1

tiui ∈ U we can write G(x) =
l∑
i=1

siG(ui) for some si ∈ R, and then for each i we have

si =
〈
G(x), G(ui)

〉
, since V is orthonormal

= 〈x, ui〉 , since G preserves inner product
= ti , since U is orthonormal.



4: Identify Cn with R2n using the bijection φ : Cn → R2n given by

φ
(
x1 + i y1, · · · , xn + i yn

)t =
(
x1, y1, · · · , xn, yn

)t
.

(a) Determine whether, for all vectors u, v ∈ Cn, u is orthogonal to v in Cn if and only if φ(u) is orthogonal
to φ(v) in R2n.

Solution: Note first that for u, v ∈ Cn given by u =

 a1 + i b1
...

an + i bn

 and v =

 c1 + i d1
...

cn + i dn

, we have

〈u, v〉 =
n∑
k=1

(ak + i bk)(ck − i dk) =
n∑
k=1

(akck + bkdk) + i
n∑
k=1

(−akdk + bkck) , and

φ(u).φ(v) =
n∑
k=1

(akck + bkdk) = Re
(
〈u, v〉

)
.

It follows that if 〈u, v〉 = 0 then φ(u).φ(v) = 0, but the converse does not hold. For example for u = e1
and v = i e1 (where e1 is the first standard basis vector) we have 〈u, v〉 = i and φ(u).φ(v) = 0.

(b) Determine whether, for all complex subspaces U, V ⊂ Cn, U is orthogonal to V in Cn if and only if φ(U)
is orthogonal to φ(V ) in R2n.

Solution: This is true. Suppose first that U is orthogonal to V in Cn (so 〈u, v〉 = 0 for all u ∈ U, v ∈ V ).
Given x ∈ φ(U) and y ∈ φ(V ), let u = φ−1(x) and v = φ−1(y). Then (by our work in part (a))

x. y = φ(u).φ(v) = Re
(
〈u, v〉

)
= Re(0) = 0 .

Thus φ(U) is orthogonal to φ(V ) in R2n. Conversely, suppose that φ(U) is orthogonal to φ(V ) in R2n. Let
u ∈ U and v ∈ V . Note that we also have iv ∈ V . Then

0 = φ(u).φ(v) = Re
(
〈u, v〉

)
, and

0 = φ(u).φ(iv) = Re
(
〈u, iv〉

)
= Re

(
− i〈u, v〉

)
= Im

(
〈u, v〉

)
.

Since Re
(
〈u, v〉

)
= 0 = Im

(
〈u, v〉

)
, it follows that 〈u, v〉 = 0. Thus U is orthogonal to V in Cn.



5: Identify Cn with R2n using the map φ from question 4. Given two 1-dimensional complex subspaces
U, V ⊂ Cn, we define the angle between U and V to be

angle(U, V ) = cos−1 |〈u, v〉|
|u||v|

, where 0 6= u ∈ U , 0 6= v ∈ V .

(a) Explain why this definition is well-defined.

Solution: The definition makes sense firstly because 0 ≤ |〈u, v〉|
|u||v|

≤ 1 by Cauchy’s Inequality and secondly

because the definition does not depend on the choice of u and v; indeed given 0 6= u′ ∈ U and 0 6= v′ ∈ V
we have u′ = su and v′ = tv for some 0 6= s, t ∈ C and so

|〈u′, v′〉|
|u′||v′|

=
〈su, tv〉|
|su||tv|

=
|st〈u, v〉|
|s||u| |t||v|

=
|〈u, v〉|
|u||v|

.

(b) Determine whether, for all 1-dimensional complex subspaces U, V ⊂ Cn, the angle between U and V in
Cn is equal to the angle between φ(U) and φ(V ) in R2n.

Solution: This is true. When U = V we have φ(U) = φ(V ) and angle(U, V ) = 0 = angle
(
φ(U), φ(V )

)
.

Suppose that U 6= V . Note that this implies that U ∩ V = {0} (since U and V are 1-dimensional). Let
X = φ(U) and Y = φ(V ). Note that X and Y are both 2-dimensional with X ∩ Y = φ(U) ∩ φ(V ) =
φ(U ∩ V ) = {0}. For 0 6= u, v ∈ Cn write

A(u, v) = angle
(
SpanC{u} , SpanC{v}

)
= cos−1 |〈u, v〉|

|u||v|
and for 0 6= x, y ∈ R2n write

B(x, y) = angle
(
SpanR{x} , SpanR{y}

)
= cos−1 |x. y|

|x||y|
=

{
θ(x, y) if 0 ≤ θ(x, y) ≤ π

2

π − θ(x, y) if π
2 ≤ θ(x, y) ≤ π .

With this notation we have

angle(U, V ) = A(u, v) where 0 6= u ∈ U , 0 6= v ∈ V
angle(X,Y ) = min

{
B(x, y)

∣∣0 6= x ∈ X , 0 6= y ∈ Y
}
.

Recall that by our work in 4(a), when x = φ(u) and y = φ(v) we have x. y = Re
(
〈u, v〉

)
. Also note that

|x|2 = 〈x, x〉 = Re
(
〈u, u〉

)
= Re

(
|u|2
)

= |u|2 so that |x| = |u|, and similarly |y| = |v|.
Given 0 6= x ∈ X and 0 6= y ∈ Y , let u = φ−1(x) and v = φ−1(y). Note that 0 6= u ∈ U and 0 6= v ∈ V

and we have |x. y| =
∣∣Re
(
〈u, v〉

)∣∣ ≤ |〈u, v〉| so that |x
. y|
|x||y| ≤

|〈u,v〉|
|u||v| and hence B(x, y) ≥ A(u, v). It follows

that angle(U, V ) ≤ angle(X,Y ).
Conversely, given 0 6= u ∈ U and 0 6= v ∈ V , write 〈u, v〉 = r ei θ with r = |〈u, v〉|. Note that

0 6= ei θv ∈ V and |ei θv| = |v|. Let x = φ(u) and y = φ(ei θv) and note that 0 6= x ∈ X and 0 6= y ∈ Y . We
have

x. y = Re
(〈
u, ei θv

〉)
= Re

(
e−i θ〈u, v〉

)
= Re

(
e−i θ rei θ

)
= Re(r) = r = |〈u, v〉|

so that |x
. y|
|x||y| = |〈u,v〉|

|u||v| and hence B(x, y) = A(u, v). It follows that angle(X,Y ) ≤ angle(U, V ).


