MATH 245 Linear Algebra 2, Solutions to Assignment 3
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: Let up = 1= b=, and x = Nk Let U = {u1,uo,us} and let U = Span Y. Find
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ProjU(x) in the following three ways.
(a) Let A = (u1,uz,u3) € Myys then use the formula Proj (x) = Ay where y is the solution to AtAy = Alz.

Solution: We have
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¢) Find w = X (u1,ug, us) so that {w} is a basis for UL, then calculate Proj (z) =2 — Proj (z).
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Solution: We let
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: Consider the vector space P, = P»(R) as a subspace of the vector space
1
C((0,1)) =¢((0,1),R) = {f :(0,1) — R‘f is continuous, and / f(z)? da converges.}
0

1
with the inner product given by (f,g) = / fa.
0

(a) Let pg = 1, p1 = = and p = 2. Apply the Gram-Schmidt Procedure to the basis {pg, p1,p2} to obtain
an orthogonal basis {qo, ¢1,¢2} for Ps.

Solution: We let
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We also note (for use in parts (b) and (c)) that
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(b) Find the quadratic f € P, which minimizes / (f(z) - x*1/3)2 dzx.
0
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Solution: Write g(x) = 27'/3. Note that / (f(z) - x_1/3)2dac =|f- g|2. To minimize |f — g| we must
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where me made use of some equalities from part (a) along with the following
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(¢) Given that f € C((0,1)) with [ f(z)dz =3, / xf(z)dx =2 and / 22 f(z) dx = 1, find the minimum
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possible value for / f(x)?dx
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Solution: Since (f,1) =3, (f,z) =2 and (f,z?) = 1 we have

(frq0) =(f,1) =3

<f’q1>_<f’ _l>_<fa >_l<f,1>:2—%=%,and

(frao) = {(fra® —x+ L} =(f,2®) = (fiz) + H(f, 1) =1—-2+4+ 1 =1,
and hence

. (f,q0) (f,a1) (f,a2) 3 1/2 —1/2
PrO.]PZ(f) = |q0|2 qo + |q1|2 g1+ ‘q2|2 q2 = 7490 + 1/12‘]1 + 180 42 = 3q0 +6¢11 - 90(]2 .

1
Let g = 3qp+6¢q1 —90¢s. Given that f € C(0,1) with Proj | (f) = g, in order to minimize |f|? = / f(z)? dx
2

0
we must choose f = g since, by Pythagoras’ Theorem, we have |f|> = |g|? + |f — g|*> > |g|?> with equality
only when |f — g| = 0. Thus the minimum possible value for |f|? is

gl> = (3qo + 61 — 90g2, 3q0 + 6¢1 — 90g2) = 9|qo|* + 36q1|* + 8100|go|* = 9+ 35 + 8100 — 9 4 3+ 45 = 57.



3: Let U and V be inner product spaces over R. An isometry from U to V is a surjective map F : U — V
which preserves distance, so that for all z,y € U we have |F(x) - F(y)‘ = |z — y|. An inner product space
isomorphism from U to V is a bijective linear map G : U — V which preserves inner product, so that for
all z,y € U we have <G(x),G(y)> = (x,y). Show that, in the case that U and V are finite dimensional,
every isometry F': U — V is of the form F(z) = G(x) + b for some inner product space isomorphism G and
some b € V.

Solution: Let F': U — V be an isometry. Note that F' is bijective since it is surjective by definition and it
is injective since, for z,y € U we have
F(z)=F(y) = |F(x)—F(y)’ =0=|z—yl=0=z=y.
Define G : U — V by
G(z) = F(x) — F(0)

so that we have F(z) = G(x)+b with b = F(0). Note that G is bijective, G(0) = 0 and G preserves distance
since for z,y € U we have

|G(z) = G(y)| = |F(z) = F(0) = F(y) + F(0)| = |F(2) = F(y)| = o —y].
It follows from the Polarization Identity that G preserves inner product, indeed for z,y € U we have
(G(2),G(y)) = 3(IG(@)]* + |G(y)|* — |G(z) — G(y)|?) , by the Polarization Identity
3(IG() = GO +1G(y) — G(0)]> = |G(z) = G(y)I?) , since G(0) =0
$(Jlz =02+ |y — 0|2 — |# — y|?) , since G preserves distance
3 (|22 + 1yl? = |z — yf?)
= (x,y) , by the Polarization Identity.

Finally, we provide two proofs that G is linear. For the first proof (which is valid even when U and V are
infinite-dimensional), let x,y € U and t € R. Then we have G(z + ty) = G(x) + tG(y) since

|Gz +ty) — (Glz) +tG(y))|* = |Gz + ty) — G(z) — tG(y)|”

= (G(z +ty) — G(z) —tG(y), G(ferty)—G( ) —tG(y))

= (G(z +ty) Gz +ty)) — (G(z + ty), G(z)) — t{G(z + ty),G(y))
—(G(2),G(x + ty)) + (G(), ( )+ < (x),G(y))
t(G( ) G(x—i—ty )) +H{G(y),G(z)) +t*(G(y), G(y))

= (v +ty,z +ty) — (v + ty, >—t<x+ty,y>
—(z,z + ty) + (x,x) + t{z,y)
— (y, & +ty) + t{y, ) + 2 (y,y)
:<x+ty—x—ty,x+ty—x—ty>
=0.

For the second proof, we begin by noting that G~! also preserves inner product. Indeed, given u,v € V, by
writing 2 = G~!(u) and y = G~!(v) and using the fact that G preserves inner product, we have

(G7Hw), G7Hv)) = (z,y) = (G(2),G(y)) = (u,v).
Next we show that dim(U) = dim(V). Let & = {us,---,w} be an orthonormal basis for U, and let
V = {G(u1),---,G(w)}. Since G preserves inner product, V is an orthonormal set, hence V is linearly
independent, hence dimU = [ < dim V. Similarly, since G~ also preserves inner product, dimV < dim U.
Thus dimU = dimV and V is an orthonormal basis for V. Finally we note that G is linear since for

1 1
x =Y, tyu; € U we can write G(x) = Y s;G(u;) for some s; € R, and then for each i we have
i=1 i=1

s; = (G(z),G(u;)) , since V is orthonormal
= (x,u;) , since G preserves inner product

=1t; , since U is orthonormal.



4: Identify C™ with R?" using the bijection ¢ : C* — R?" given by

Pz +iys, - 2 -H'yn)t = ($1yy1,"',$n7yn)t~
(a) Determine whether, for all vectors u,v € C™, u is orthogonal to v in C™ if and only if ¢(u) is orthogonal
to ¢(v) in R,
a1 +1iby c1+idy
Solution: Note first that for u,v € C™ given by u = and v = , we have
ay +1iby, cn +idy

(u,v)y = Y (ag +ibg)(ckg —idg) = > (ager + brdg) +1 > (—apdy + bicy) , and
k=1 E=1 k=1

M=

(agcr + brdy) = Re((u, v)) .

p(u) « p(v) =
k=1
It follows that if (u,v) = 0 then ¢(u) » #(v) = 0, but the converse does not hold. For example for u = e;
and v = ie; (where e; is the first standard basis vector) we have (u,v) =i and ¢(u) « $(v) = 0.

(b) Determine whether, for all complex subspaces U,V C C™, U is orthogonal to V in C" if and only if ¢(U)
is orthogonal to ¢(V) in R?".

Solution: This is true. Suppose first that U is orthogonal to V' in C™ (so (u,v) = 0 for all u € U,v € V).
Given z € ¢(U) and y € ¢(V), let u = ¢~ (x) and v = ¢~ !(y). Then (by our work in part (a))
2+ y = g(u) - $(v) = Re((u,)) = Re(0) = 0.

Thus ¢(U) is orthogonal to ¢(V) in R?". Conversely, suppose that ¢(U) is orthogonal to ¢(V) in R?". Let
u € U and v € V. Note that we also have iv € V. Then

0= ¢(u) « #(v) = Re((u,v)) , and

0= ¢(u) « ¢(iv) = Re((u,iv)) = Re( — i{u,v)) = Im({u,v)) .
Since Re({u,v)) = 0 = Im((u,v)), it follows that (u,v) = 0. Thus U is orthogonal to V in C".



5: Identify C™ with R?" using the map ¢ from question 4. Given two l-dimensional complex subspaces
U,V C C", we define the angle between U and V to be

angle(U, V) = cos™* ||<u|,|v>|| , where 0 £ueU,0#£veV.
ulfv

(a) Explain why this definition is well-defined.

[{u, v)]|
Jul[v]

because the definition does not depend on the choice of u and v; indeed given 0 # v’ € U and 0 £v' € V
we have v/ = su and v’ = tv for some 0 # s,t € C and so

)] st st o) [ o)
Wilol ~ Julltel ~ Tsllulfellel ~ Jullo]

Solution: The definition makes sense firstly because 0 < < 1 by Cauchy’s Inequality and secondly

(b) Determine whether, for all 1-dimensional complex subspaces U,V C C™, the angle between U and V in
C" is equal to the angle between ¢(U) and ¢(V) in R?*".

Solution: This is true. When U = V we have ¢(U) = ¢(V) and angle(U,V) = 0 = angle(¢(U), p(V)).
Suppose that U # V. Note that this implies that U N’V = {0} (since U and V are 1- dlmensmnal) Let

= ¢(U) and Y = ¢(V). Note that X and Y are both 2-dimensional with X NY = ¢(U) N p(V) =
(b(U NV) ={0}. For 0 # u,v € C™ write

A(u,v) = angle(Spanc{u}, Spanc{v}) = cos™

and for 0 # z,y € R?" write

. O(z,y) if0<6(x,
B(x,y) = angle(Spang {«} , Spang {y}) = cos™ oyl _ { (z,9) H0<6(y)

With this notation we have
angle(U,V) = A(u,v) where 0 #u e U,0#v eV
angle(X,Y) =min {B(z,y)[0 £z € X ,0£y€Y}.
Recall that by our work in 4(a), when z = ¢(u) and y = ¢(v) we have x - y = Re((u,v)). Also note that
|z|> = (z, %) = Re((u,u)) = Re(|u|?) = |u|? so that |z| = |u], and similarly ly| = |v|.
Given0#z€ X and 0#y e Y, let u=¢"'(z) and v = ¢~ (y). Note that 0 Au € U and 0 £ v €V
and we have |z « y| = [Re((u,v))| < |(u,v)]| so that |‘9;|'|yy‘| < ||<3||v)\| and hence B(z,y) > A(u,v). It follows
that angle(U, V) < angle(X,Y).
Conversely, given 0 # v € U and 0 # v € V, write (u,v) = re'? with r = |(u,v)|. Note that
0+# e €V and |e'%] = |v]. Let © = ¢(u) and y = d)(e %) and note that 0 # 2 € X and 0 £y € Y. We
have

z+y=Re((u,e'v)) =Re(e "?(u,v)) =Re(e "?re'?) = Re(r) = r = |(u,v)]

so that 122yl — w40 q hence B(z,y) = A(u,v). It follows that angle(X,Y) < angle(U, V).
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